Home Mathematics Arveson’s version of the Gauss–Bonnet–Chern formula for Hilbert modules over the polynomial ring
Article
Licensed
Unlicensed Requires Authentication

Arveson’s version of the Gauss–Bonnet–Chern formula for Hilbert modules over the polynomial ring

  • Penghui Wang ORCID logo EMAIL logo , Ruoyu Zhang and Zeyou Zhu ORCID logo
Published/Copyright: July 24, 2025

Abstract

In this paper, we complete the framework of Arveson’s version of the Gauss–Bonnet–Chern formula by proving that Arveson’s version of the Gauss–Bonnet–Chern formula holding true for the quotient module in the Drury–Arveson module is equivalent to the associated submodule being locally algebraic. Moreover, we establish the asymptotic Arveson curvature invariant and the asymptotic Euler characteristic for contractive Hilbert modules over the polynomial ring in infinitely many variables, and obtain the infinitely-many-variables analogue of Arveson’s version of the Gauss–Bonnet–Chern formula. Finally, we solve the finite defect problem for submodules of the Drury–Arveson module H 2 in infinitely many variables by proving that H 2 has no nontrivial submodules of finite rank.

Award Identifier / Grant number: 12271298

Award Identifier / Grant number: 11871308

Funding statement: This work is supported by National Natural Science Foundation of China: 12271298 and 11871308.

A Appendix

In this section, we will prove (2.14), Proposition 4.8 and Proposition 4.10.

Let ℋ be a 𝑑-contractive Hilbert module of finite rank. Suppose that dim ran Δ H = n . Let A = { e 1 , , e n } be a linear basis of ran Δ H . Without loss of generality, suppose that B = { e 1 , , e k } is a maximal linearly independent set of { e 1 , , e n } in the module M H . Then, for every k + 1 i n , { e 1 , , e k , e i } is linearly dependent in the module M H ; hence there exist polynomials p 1 , i , , p k , i and a nonzero polynomial p i , i such that

(A.1) j = 1 k p j , i e j + p i , i e i = 0 .

Write

C = { deg p j , i : 1 j k , k + 1 i n } { deg p i , i : k + 1 i n } ,

and

(A.2) n 1 = max { r : r C } .

For m > n 1 , k + 1 i n , set

S m = { f P d : deg f m } and S m , i = { f p i , i : f P d , deg f m n 1 } .

It is evident that S m , i is a subspace of S m . We can thus have a subspace, denoted by S m , i , such that

(A.3) S m = S m , i S m , i .

For m 1 , set

(A.4) q m ( x ) = ( x + 1 ) ( x + 2 ) ( x + m ) m ! .

To prove (2.14), we need the following two lemmas.

Lemma A.1

For k + 1 i n ,

lim m dim { f e i : f S m , i } q d ( m ) = 0 .

Proof

For m > n 1 , by (A.3),

dim S m , i = dim S m dim S m , i = q d ( m ) q d ( m n 1 ) .

Therefore,

dim { f e i : f S m , i } dim S m , i = q d ( m ) q d ( m n 1 ) .

By the definition of q d ( x ) in (A.4), there is a positive constant C d such that

dim { f e i : f S m , i } q d ( m ) q d ( m n 1 ) C d m d 1 .

This implies that

lim m dim span { f e i : f S m , i } q d ( m ) = 0 .

For any α = ( α 1 , α 2 , , α d ) N d , set

| α | = i = 1 d α i , α ! = α 1 ! α d ! , and z α = z 1 α 1 z 2 α 2 z d α d , z B d .

Lemma A.2

For m 1 ,

dim span { f ζ : f P d , deg f m , ζ B } q d ( m ) = k .

Proof

Set

F m = { z α : | α | m } and B m = { f e : f F m , e B } .

It suffices to show that B m is a linear basis of span { f ζ : f P d , deg f m , ζ B } . In fact, obviously,

span B m = span { f ζ : f P d , deg f m , ζ B } .

We only need to prove B m is linearly independent. Write

B m = { f j e i : 1 j F m ,  1 i k } ,

where F m is the number of the elements in F m . Assume that, for λ i , j C ,

i = 1 k j = 1 F m λ i , j f j e i = 0 ;

then, from the fact that 𝐵 is a maximal linearly independent set of { e 1 , , e n } in the module M H , j = 1 F m λ i , j f j = 0 for 1 i k . Notice that F m is linearly independent; therefore, λ i , j = 0 .

It is easy to see that F m = q d ( m ) and B m = k q d ( m ) . Then

dim span { f ζ : f P d , deg f m , ζ B } = B m = k q d ( m ) ,

which implies that

dim span { f ζ : f P d , deg f m , ζ B } q d ( m ) = k .

Under the above preparations, we can prove (2.14).

Proposition A.3

Let ℋ be a 𝑑-contractive Hilbert module of finite rank; then

χ ( H ) = lim m dim M m q d ( m ) = d ! lim m dim M m m d ,

where M m = span { f ζ : f P d , deg f m , ζ ran Δ H } .

Proof

By (2.1), χ ( H ) = rank M H . Notice that { e i } i = 1 n generates M H ; then, by Lemma 2.3, χ ( H ) = rank ( M H ) = k . Hence it suffices to prove that

lim m dim M m q d ( m ) = k .

Set

V i = { f e i : f P d , deg f m } , k + 1 i n .

For k + 1 i n , by (A.1) and (A.2), we have

{ f p i , i e i : f P d , deg f m n 1 } span { f ζ : f P d , deg f m , ζ B } ;

then

V i = { f e i : f S m } = { f e i : f S m , i S m , i } = { f e i : f S m , i } + { f e i : f S m , i } = { f p i , i e i : f P d , deg f m n 1 } + { f e i : f S m , i } span { f ζ : f P d , deg f m , ζ B } + { f e i : f S m , i } .

Hence

span { f ζ : f P d , deg f m , ζ ran Δ H } = span { f ζ : f P d , deg f m , ζ A } = span { f ζ : f P d , deg f m , ζ B } + V k + 1 + + V n span { f ζ : f P d , deg f m , ζ B } + { f e k + 1 : f S m , k + 1 } + + { f e n : f S m , n } .

Therefore,

dim span { f ζ : f P d , deg f m , ζ B } dim M m = dim span { f ζ : f P d , deg f m , ζ ran Δ H } dim span { f ζ : f P d , deg f m , ζ B } + i = k + 1 n dim { f e i : f S m , i } .

By Lemma A.1 and Lemma A.2, we have

lim m dim M m q d ( m ) = k .

Next, we will prove Proposition 4.8. The ideas and techniques come from [3]. Let ℋ be an 𝜔-contractive Hilbert module of finite rank. For simplicity, write R = ran Δ H . Let H 2 ( B m ) be the Hardy spaces on the unit ball, and let P H m 2 R be the projection from H 2 R onto H m 2 R . Considering the linear operator A m : E H 2 ( B m ) R defined by

A m ζ = b m P H m 2 R Φ ( 1 ζ ) , ζ E ,

where Φ is defined in (4.8) and

b m : H m 2 R H 2 ( B m ) R

is the natural inclusion mapping. To continue, we need some lemmas.

Lemma A.4

K m ( H ) = rank H trace ( A m A m ) .

Proof

Let Φ ̂ = P H m 2 R Φ P H m 2 E . Then, for every ζ 1 E , ζ 2 R , z ( m ) B m ,

Φ ̂ ( z ( m ) ) ζ 1 , ζ 2 = Φ ̂ ( 1 ζ 1 ) , K z ( m ) ζ 2 = P H m 2 R Φ P H m 2 E ( 1 ζ 1 ) , K z ( m ) ζ 2 = Φ ( 1 ζ 1 ) , K z ( m ) ζ 2 = Φ ( z ( m ) ) ζ 1 , ζ 2 .

So

A m ζ ( z ( m ) ) = Φ ̂ ( 1 ζ ) ( z ( m ) ) = Φ ̂ ( z ( m ) ) ζ = Φ ( z ( m ) ) ζ ,

and for almost every z ( m ) B m ,

trace ( Φ ( z ( m ) ) Φ ( z ( m ) ) ) = trace ( Φ ( z ( m ) ) Φ ( z ( m ) ) ) = n = 1 Φ ( z ( m ) ) e n 2 = n = 1 A m e n ( z 1 , , z m ) 2 ,

where { e n } i = 1 is a basis of 𝐸. Integrating over B m , we have

B m trace ( Φ ( z ( m ) ) Φ ( z ( m ) ) ) d σ m = n = 1 B m A m e n ( z ( m ) ) 2 d σ m = n = 1 A m e n H 2 ( B m ) R 2 = trace ( A m A m ) = trace ( A m A m ) .

Then, by (4.5), (4.6) and (4.7),

K m ( H ) = B m trace ( I R Φ ( z ( m ) ) Φ ( z ( m ) ) ) d σ m = rank H trace ( A m A m ) .

The proof is complete. ∎

Now, we define a linear map Γ m : B ( H m 2 R ) B ( H 2 ( B m ) R ) as follows:

Γ m ( X ) = b m X b m .

Let Z 1 , , Z m be the canonical operators of the Hardy module H 2 ( B m ) R . The linear map d Γ m : B ( H m 2 R ) B ( H 2 ( B m ) R ) is defined as follows:

d Γ m ( X ) = Γ m ( X ) k = 1 m Z k Γ m ( X ) Z k .

Lemma A.5

d Γ m ( P H m 2 R Φ Φ P H m 2 R ) = A m A m .

Proof

Notice that, for ξ H 2 ( B m ) R , η E ,

1 A m ξ , 1 η = A m ξ , η = ξ , A m η = ξ , b m P H m 2 R Φ P H m 2 E ( 1 η ) = P H m 2 E Φ P H m 2 R b m ξ , 1 η .

It follows that

A m A m ξ , η = 1 A m ξ , 1 A m η = P H m 2 E Φ P H m 2 R b m ξ , 1 A m η = Φ b m ξ , 1 A m η = Φ b m ξ , ( E 0 I E ) ( 1 A m η ) = ( E 0 I E ) Φ b m ξ , 1 A m η = ( E 0 I E ) Φ b m ξ , P H m 2 E Φ P H m 2 R b m η = b m P H m 2 R Φ P H m 2 E ( E 0 I E ) Φ b m ξ , η = b m P H m 2 R Φ ( E 0 I E ) Φ P H m 2 R b m ξ , η .

Thus, from the fact that Φ hom ( H 2 E , H 2 R ) , we have

A m A m = b m P H m 2 R Φ ( E 0 I E ) Φ P H m 2 R b m = ( b m P H m 2 R Φ ) ( I H 2 E i = 1 T i T i ) ( b m P H m 2 R Φ ) = ( b m P H m 2 R Φ ) ( b m P H m 2 R Φ ) i = 1 m ( b m P H m 2 R Φ ) T i T i ( b m P H m 2 R Φ ) = Γ m ( P H m 2 R Φ Φ P H m 2 R ) i = 1 m Z i ( b m P H m 2 R Φ ) ( b m P H m 2 R Φ ) Z i = Γ m ( P H m 2 R Φ Φ P H m 2 R ) i = 1 m Z i Γ m ( P H m 2 R Φ Φ P H m 2 R ) Z i = d Γ m ( P H m 2 R Φ Φ P H m 2 R ) ,

where T i = S z i I E .∎

Set ϕ m ( X ) = k = 1 m T k X T k .

Proof of Proposition 4.8

By Lemma A.5 and [3, Theorem 3.10], we have

trace ( A m A m ) = trace ( d Γ m ( P H m 2 R Φ Φ P H m 2 R ) ) = rank H lim n trace ( P H m 2 R Φ Φ P H m 2 R E n , m ) trace ( E n , m ) ,

where E n , m is the projection from H m 2 R onto its subspace of homogeneous (vector-valued) functions of degree 𝑛. Since L L + Φ Φ = I , by Lemma A.4,

K m ( H ) = rank H trace ( A m A m ) = rank H lim n ( 1 trace ( P H m 2 R Φ Φ P H m 2 R E n , m ) trace ( E n , m ) ) = rank H lim n trace ( P H m 2 R L L P H m 2 R E n , m ) trace ( E n , m ) = lim n trace ( P H m 2 R L L P H m 2 R E n , m ) q m 1 ( n ) = lim n trace ( L P H m 2 R E n , m P H m 2 R L ) q m 1 ( n ) = lim n trace ( ϕ m n ( Δ H 2 ) ) q m 1 ( n ) .

The last equation follows from the reasoning below. For η H , by Theorem 4.1,

L η = ( ζ 0 , ζ 1 , ) , ζ n = i 1 , i 2 , , i n = 1 e i 1 e i n Δ H T i n T i 1 η .

Let ζ m , n = i 1 , i 2 , , i n = 1 m e i 1 e i n Δ H T i n T i 1 η ; then

L P H m 2 R E n , m P H m 2 R L η = L P H m 2 R E n , m P H m 2 R ( ζ 0 , ζ 1 , ) = L P H m 2 R E n , m ( ζ m , 0 , ζ m , 1 , ) = L P H m 2 R ζ m , n = L ζ m , n = i 1 , , i n = 1 m T i 1 T i n Δ H 2 T i n T i 1 η = ϕ m n ( Δ H 2 ) η .

Therefore,

K m ( H ) = lim n trace ( ϕ m n ( Δ H 2 ) ) q m 1 ( n ) = lim n k = 0 n trace ( ϕ m k ( Δ H 2 ) ) k = 0 n q m 1 ( k ) = lim n trace ( k = 0 n ϕ m k ( Δ H 2 ) ) q m ( n ) .

Finally, we will prove Proposition 4.10.

Proof of Proposition 4.10

Obviously,

M H m , n = span { f Δ H ζ : f P m , deg f n , ζ H } = span { T i 1 T i k Δ H ζ : ζ H ,  1 i 1 , , i k m , k = 0 , 1 , , n }

is a linear submanifold of ℋ. Then

M H m , n = { η H : k = 0 n i 1 = 1 m i k = 1 m | T i 1 T i k Δ H ζ , η | = 0 for all ζ H } = { η H : k = 0 n i 1 = 1 m i k = 1 m Δ H T i k T i 1 η 2 = 0 } = { η H : k = 0 n ϕ m k ( Δ H 2 ) η , η = 0 } = ker ( k = 0 n ϕ m k ( Δ H 2 ) ) .

Hence, by (4.13),

χ m ( H ) = m ! lim n dim M H m , n n m = m ! lim n dim ran ( k = 0 n ϕ m k ( Δ H 2 ) ) n m .

Acknowledgements

The authors thank the referees for helpful suggestions, which make this paper more readable.

References

[1] J. Agler and J. E. McCarthy, Pick interpolation and Hilbert function spaces, Grad. Stud. Math. 44, American Mathematical Society, Providence 2002. 10.1090/gsm/044Search in Google Scholar

[2] W. Arveson, Subalgebras of C -algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159–228. 10.1007/BF02392585Search in Google Scholar

[3] W. Arveson, The curvature invariant of a Hilbert module over C [ z 1 , , z d ] , J. reine angew. Math. 522 (2000), 173–236. 10.1515/crll.2000.037Search in Google Scholar

[4] W. Arveson, The Dirac operator of a commuting 𝑑-tuple, J. Funct. Anal. 189 (2002), no. 1, 53–79. 10.1006/jfan.2001.3827Search in Google Scholar

[5] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading 1969. Search in Google Scholar

[6] T. Bhattacharyya and A. Jindal, Complete Nevanlinna–Pick kernels and the characteristic function, Adv. Math. 426 (2023), Article ID 109089. 10.1016/j.aim.2023.109089Search in Google Scholar

[7] T. Bhattacharyya and A. Jindal, Complete Nevanlinna–Pick kernels and the curvature invariant, Ann. Mat. Pura Appl. (4) 204 (2025), no. 3, 1183–1197. 10.1007/s10231-024-01524-1Search in Google Scholar

[8] L. Chen, A uniform approach to fiber dimension of invariant subspaces, J. Operator Theory 74 (2015), no. 2, 319–328. 10.7900/jot.2014jun22.2024Search in Google Scholar

[9] L. Chen, G. Cheng and X. Fang, Fiber dimension for invariant subspaces, J. Funct. Anal. 268 (2015), no. 9, 2621–2646. 10.1016/j.jfa.2015.01.017Search in Google Scholar

[10] X. Chen and K. Guo, Analytic Hilbert modules, Chapman & Hall/CRC Res. Notes in Math. 433, Chapman & Hall/CRC, Boca Raton 2003. Search in Google Scholar

[11] G. Cheng and X. Fang, A generalization of the cellular indecomposable property via fiber dimension, J. Funct. Anal. 260 (2011), no. 10, 2964–2985. 10.1016/j.jfa.2011.02.009Search in Google Scholar

[12] G. Cheng, K. Guo and K. Wang, Transitive algebras and reductive algebras on reproducing analytic Hilbert spaces, J. Funct. Anal. 258 (2010), no. 12, 4229–4250. 10.1016/j.jfa.2010.01.021Search in Google Scholar

[13] R. G. Douglas and V. I. Paulsen, Hilbert modules over function algebras, Pitman Res. Notes Math. Ser. 217, Longman Scientific & Technical, Harlow 1989. Search in Google Scholar

[14] J. Eschmeier and S. Langendörfer, Cowen–Douglas tuples and fiber dimensions, J. Operator Theory 78 (2017), no. 1, 21–43. 10.7900/jot.2016may04.2134Search in Google Scholar

[15] X. Fang, Hilbert polynomials and Arveson’s curvature invariant, J. Funct. Anal. 198 (2003), no. 2, 445–464. 10.1016/S0022-1236(02)00120-9Search in Google Scholar

[16] X. Fang, Invariant subspaces of the Dirichlet space and commutative algebra, J. reine angew. Math. 569 (2004), 189–211. 10.1515/crll.2004.025Search in Google Scholar

[17] X. Fang, The Fredholm index of quotient Hilbert modules, Math. Res. Lett. 12 (2005), no. 5–6, 911–920. 10.4310/MRL.2005.v12.n6.a11Search in Google Scholar

[18] X. Fang, The Fredholm index of a pair of commuting operators, Geom. Funct. Anal. 16 (2006), no. 2, 367–402. 10.1007/s00039-006-0561-zSearch in Google Scholar

[19] J. Gleason, S. Richter and C. Sundberg, On the index of invariant subspaces in spaces of analytic functions of several complex variables, J. reine angew. Math. 587 (2005), 49–76. 10.1515/crll.2005.2005.587.49Search in Google Scholar

[20] D. C. V. Greene, S. Richter and C. Sundberg, The structure of inner multipliers on spaces with complete Nevanlinna–Pick kernels, J. Funct. Anal. 194 (2002), no. 2, 311–331. 10.1006/jfan.2002.3928Search in Google Scholar

[21] K. Guo, Defect operators, defect functions and defect indices for analytic submodules, J. Funct. Anal. 213 (2004), no. 2, 380–411. 10.1016/j.jfa.2003.11.004Search in Google Scholar

[22] K. Guo, Defect operators for submodules of H d 2 , J. reine angew. Math. 573 (2004), 181–209. 10.1515/crll.2004.059Search in Google Scholar

[23] R. N. Levy, Note on the curvature and index of an almost unitary contraction operator, Integral Equations Operator Theory 48 (2004), no. 4, 553–555. 10.1007/s00020-003-1276-2Search in Google Scholar

[24] P. S. Muhly and B. Solel, The curvature and index of completely positive maps, Proc. Lond. Math. Soc. (3) 87 (2003), no. 3, 748–778. 10.1112/S0024611503014333Search in Google Scholar

[25] S. Parrott, The curvature of a single contraction operator on a Hilbert space, preprint (2000), https://arxiv.org/abs/math/0006224. Search in Google Scholar

[26] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Mod. Birkhäuser Class., Birkhäuser/Springer, Basel 1992. 10.1007/978-3-0348-0566-7Search in Google Scholar

[27] J. J. Rotman, Advanced modern algebra, Grad. Stud. Math. 114, American Mathematical Society, Providence 2010. Search in Google Scholar

Received: 2025-02-17
Revised: 2025-06-19
Published Online: 2025-07-24
Published in Print: 2025-10-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2025-0049/html
Scroll to top button