Home Labyrinthulomycota from Brazilian mangrove swamps and coastal waters
Article
Licensed
Unlicensed Requires Authentication

Labyrinthulomycota from Brazilian mangrove swamps and coastal waters

  • Marcela Castilho Boro

    Marcela Castilho Boro is a biologist. She is working at the “Instituto de Botânica” of State of São Paulo as research assistant, where nowadays is the curator of the Fungal Culture Collection. She earned her Master’s degree from “Instituto Biológico” in plant health and food and environmental security in agribusiness. Currently, she is finishing her PhD thesis on morphology/molecular diversity and quantification of fatty acids of the Labyrinthulomycota isolated from Brazilian mangrove swamps and coastal waters belonging to Atlantic rainforest.

    ORCID logo EMAIL logo
    , Ricardo Harakava

    Ricardo Harakava is a molecular biologist with an emphasis on plant pathology. Since 1997 he works as a scientific researcher at “Instituto Biológico”, São Paulo, Brazil. He earned his PhD in plant pathology at the University of Florida in 2000. He applies molecular tools to solve a variety of problems in plant pathology such as disease diagnosis, identification and taxonomy of plant pathogens and pests, and plant-microbe interactions.

    and Carmen Lidia Amorim Pires-Zottarelli

    Carmen Lidia Amorim Pires-Zottarelli is a mycologist with more than 30 years of experience. She is a researcher of the “Instituto de Botânica”, São Paulo, Brazil, focusing her studies on taxonomy, systematic and ecology of the zoosporic fungi and fungus like organisms.

Published/Copyright: January 10, 2018

Abstract

The phylum Labyrinthulomycota is composed of three distinct groups of fungus-like organisms: the labyrinthulids, the thraustochytrids and the aplanochytrids. They are present in marine and brackish waters as saprobes and/or parasites. In recent years, there was an increased interest in studying these organisms due to the ability that some have to produce large amounts of lipids, particularly polyunsaturated fatty acids. However, in spite of their importance and diversity, in Brazil only four species were reported in the 1970s. Due to their ecological and economic importance globally and the limited knowledge of them in the country, this study aimed to evaluate the diversity of the Labyrinthulomycota in mangrove swamps and coastal waters of São Paulo State, Brazil. The specimens were isolated from water and leaf samples using different methodologies, and purified in an agar medium prepared with half-strength sterile seawater, peptone, yeast extract and glucose. After purification, they were identified by means of morphology and phylogenetic analysis of the SSU rDNA region. A total of 193 specimens representing five genera were observed, 26 specimens were incorporated into the culture collections and 29 sequences of the SSU rDNA region were deposited in GenBank. Labyrinthula sp., Aurantiochytrium sp., Parietichytrium sarkarianum and Thraustochytrium striatum are new records for Brazil, contributing to our knowledge of the diversity of fungus-like organisms in the country.

About the authors

Marcela Castilho Boro

Marcela Castilho Boro is a biologist. She is working at the “Instituto de Botânica” of State of São Paulo as research assistant, where nowadays is the curator of the Fungal Culture Collection. She earned her Master’s degree from “Instituto Biológico” in plant health and food and environmental security in agribusiness. Currently, she is finishing her PhD thesis on morphology/molecular diversity and quantification of fatty acids of the Labyrinthulomycota isolated from Brazilian mangrove swamps and coastal waters belonging to Atlantic rainforest.

Ricardo Harakava

Ricardo Harakava is a molecular biologist with an emphasis on plant pathology. Since 1997 he works as a scientific researcher at “Instituto Biológico”, São Paulo, Brazil. He earned his PhD in plant pathology at the University of Florida in 2000. He applies molecular tools to solve a variety of problems in plant pathology such as disease diagnosis, identification and taxonomy of plant pathogens and pests, and plant-microbe interactions.

Carmen Lidia Amorim Pires-Zottarelli

Carmen Lidia Amorim Pires-Zottarelli is a mycologist with more than 30 years of experience. She is a researcher of the “Instituto de Botânica”, São Paulo, Brazil, focusing her studies on taxonomy, systematic and ecology of the zoosporic fungi and fungus like organisms.

  1. Acknowledgments: We are indebted to Dr. Agostina Virginia Marano and MSc Ana Lucia de Jesus for help in the collection and processing of samples and to Manoel Osório Neves Júnior for his valuable help during sampling. We also thank the “Instituto Florestal” for the permission given to collect samples at PEIC and FAPESP (“Fundação de Amparo à Pesquisa do Estado de São Paulo”) for the financial support given to C.L.A. Pires-Zottarelli (Process no. 2012/50222-7).

References

Adl, S.M., A.G. Simpson, C.E. Lane, J. Lukes, D. Bass, S.S. Bowser, M.W. Brown, F. Burki, M. Dunthorn, V. Hampl, A. Heiss, M. Hoppenrath, E. Lara, L.L. Gall, D.H. Lynn, H. McManus, E.A.D. Mitchell, S.E. Mozley-Stanridge, L.W. Parfrey, J. Pawlowski, S. Rueckert, L. Shadwick, C.L. Schoch, A. Smirnov and F.W. Spiegel. 2012. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59: 429–493.10.1111/j.1550-7408.2012.00644.xSearch in Google Scholar PubMed PubMed Central

Alexopoulos, C.J., C.W. Mims and M.M. Blackwell. 1996. Introductory Mycology. 4th edition. John Wiley & Sons, New York. pp. 868.Search in Google Scholar

Anderson, O.R. and T. Cavalier-Smith. 2012. Ultrastructure of Diplophrys parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta). Acta Protozool. 51: 291–304.Search in Google Scholar

Arafiles, K.H.V., J.C.O. Alcantara, P.R.F. Cordero, J.A.L. Batoon, F.S. Galura, E.M. Leaño and G.R. Dedeles. 2011. Cultural optimization of thraustochytrids for biomass and fatty acid production. Mycosphere 2: 521–531.Search in Google Scholar

Atienza, G.A.M.V., K.H.V. Arafiles, M.C.M. Carmona, J.P.C. Garcia, A.M.B. Macabago, B.J.D.C., Peñacerrada, P.R.F. Cordero, R.M. Bennett and G.R. Dedeles. 2012. Carotenoid analysis of locally isolated thraustochytrids and their potential as an alternative fish feed for Oreochromis niloticus (Nile tilapia). Mycosphere 3: 420–428.10.5943/mycosphere/3/4/5Search in Google Scholar

Barclay, W. and S. Zeller. 1996. Nutritional enhancement of n-3 and n-6 fatty acids in rotifers and Artemia Nauplii by feeding spray-dried Schizochytrium sp. J. World Aquacult. 27: 314–322.10.1111/j.1749-7345.1996.tb00614.xSearch in Google Scholar

Bennett, R.M., D. Honda, G.W. Beakes and M. Thines. 2017. Labyrinthulomycota. In: (J.M. Archibald, A.G.B. Simpson and C.H. Slamovits, eds) Handbook of the protists. Springer, Boston. pp. 507–542.10.1007/978-3-319-28149-0_25Search in Google Scholar

Bongiorni, L., R. Jain, S. Raghukumar and R.K. Aggarwal. 2005. Thraustochytrium gaertnerium sp. nov.: a new thraustochytrid stramenopilan protist from mangroves of Goa, India. Protist 156: 303–315.10.1016/j.protis.2005.05.001Search in Google Scholar PubMed

Booth, T. 1979. Strategies for study of fungi in marine and marine influenced ecosystems. Rev. Microbiol. 10: 123–138.Search in Google Scholar

Bower, S.M. 1987. Labyrinthuloides haliotidis n. sp. (Protozoa: Labyrinthomorpha), a pathogenic parasite of small juvenile abalone in British Columbia mariculture facility. Can. J. Bot. 65: 1996–2007.Search in Google Scholar

Burja, A.M., H. Radianingtyas, A. Windust and C.J. Barrow. 2006. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl. Microbiol. Biotechnol. 72: 1161–1169.10.1007/s00253-006-0419-1Search in Google Scholar PubMed

Carter, C.G., M.P. Bransden, T.E. Lewis and P.D. Nichols. 2003. Potential of thraustochytrids to partially replace fish oil in Atlantic salmon feeds. Mar. Biotechnol. 5: 480–492.10.1007/s10126-002-0096-8Search in Google Scholar PubMed

Chang, K.J.L., G.A. Dunstan, G.C.J. Abell, L.A. Clementson, S.I. Blackburn, P.D. Nichols and A. Koutoulis. 2012. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl. Microbiol. Biotechnol. 93: 2215–2231.10.1007/s00253-011-3856-4Search in Google Scholar PubMed

Chen, G., K.W. Fan, F.P. Lu, Q. Li, T. Aki, F. Chen and Y. Jiang. 2010. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N. Biotechnol. 27: 382–389.10.1016/j.nbt.2010.04.005Search in Google Scholar PubMed

Chodchoey, K. and C. Verduyn. 2012. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 as a function of growth temperature. Braz. J. Microbiol. 43: 187–200.10.1590/S1517-83822012000100020Search in Google Scholar

Cienkowski, L. 1867. Ueber den bau und die entwickelung der Labyrinthuleen. Archiv f. mikrosk. Anatomie. Bd. 3: 274–310.10.1007/BF02960460Search in Google Scholar

Craven, C.D., P.D. Peterson, D.E. Windham, T.K. Mitchell and S.B. Martin. 2005. Molecular identification of the turf grass rapid blight pathogen. Mycologia 97: 160–166.10.1080/15572536.2006.11832849Search in Google Scholar

Damare, V.S. 2015. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S rDNA sequencing and their morphological response to heavy metals. J. Mar. Biol. Assoc. UK 95: 265–276.10.1017/S0025315414001696Search in Google Scholar

Damare, V.S. and S. Raghukumar. 2006. Morphology and physiology of the marine straminipilan fungi, the aplanochytrids isolated from the equatorial Indian Ocean. Indian J. Mar. Sci. 35: 326–340.Search in Google Scholar

Damare, V.S. and S. Raghukumar. 2010. Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Mar. Ecol. Prog. Ser. 399: 53–68.10.3354/meps08277Search in Google Scholar

Estudillo-del Castillo, C., R.S.J. Gapasin and E.M. Leaño. 2009. Enrichment potential of PUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture 293: 57–61.10.1016/j.aquaculture.2009.04.008Search in Google Scholar

Fan, K.W., Y. Jiang, Y.W. Faan and F. Chen. 2007. Lipid characterization of mangrove thraustochytrid – Schizochytrium mangrovei. J. Agric. Food Chem. 55: 2906–2910.10.1021/jf070058ySearch in Google Scholar PubMed

Fan, K.W., T. Aki, F. Chen and Y. Jiang. 2010. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J. Microbiol. Biotechnol. 26: 1303–1309.10.1007/s11274-009-0301-2Search in Google Scholar PubMed

Franklin, S.T., K.R. Martin, R.J. Baer, D.J. Schingoethe and A.R. Hippen. 1999. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr. 129: 2048–2054.10.1093/jn/129.11.2048Search in Google Scholar PubMed

Fuller, M.S. and A. Jaworski. 1987. Zoosporic Fungi in teaching and research. Palfrey Contributions in Botany 3. Southeastern Publishing Corporation, Athens, GA. pp. 303.Search in Google Scholar

Gaertner, A. 1972. Characters used in the classification of thraustochytriaceous fungi. Veröff. Inst. Meeresf. Bremerhaven 13: 183–194.Search in Google Scholar

Gaertner, A. 1977. Revision of the Thraustochytriaceae (lower marine fungi) I. Ulkenia nov. gen., with description of three new species. Veröff. Inst. Meeresf. Bremerhaven 16: 139–157.Search in Google Scholar

Goldstein, S. 1963. Development and nutrition of new species of Thraustochytrium. Am. J. Bot. 50: 271–279.10.1002/j.1537-2197.1963.tb12234.xSearch in Google Scholar

Goldstein, S. and M. Belsky. 1964. Axenic culture studies of a new marine phycomycete possessing an unusual type of asexual reproduction. Am. J. Bot. 51: 72–78.10.1002/j.1537-2197.1964.tb06602.xSearch in Google Scholar

Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 679–704.10.1080/10635150390235520Search in Google Scholar

Honda, D., T. Yokochi, T. Nakahara, M. Erata and T. Higashihara. 1998. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res. 102: 439–448.10.1017/S0953756297005170Search in Google Scholar

Jain, R., S. Raghukumar, R. Tharanathan and N.B. Bhosle. 2005. Extracellular polysaccharide production by thraustochytrid protists. Mar. Biotechnol.7: 184–192.10.1007/s10126-004-4025-xSearch in Google Scholar

Jiang, Y., K.W. Fan, R.T.Y. Wong and F. Chen. 2004. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52: 1196–1200.10.1021/jf035004cSearch in Google Scholar

Johnson, T.W. and F.K. Sparrow. 1961. Fungi in oceans and estuaries. J. Cramer, New York, USA. pp. 668.Search in Google Scholar

Kalidasan, K., S.K. Sahu, K. Kayalvizhi and K. Kathiresan. 2015. Polyunsaturated fatty acid-producing marine thraustochytrids: a potential source for antimicrobials. J. Coastal Life Med. 3: 848–851.10.12980/jclm.3.2015j5-75Search in Google Scholar

Karling, J.S. 1981. Predominantly holocarpic and eucarpic simple biflagellate phycomycetes. 2th revised edition. J. Cramer Publishing, Berlin. pp. 252.Search in Google Scholar

Kazutaka, K. and M. Daron. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Available in: http://mafft.cbrc.jp/alignment/server. Acessed on April 4 2017.Search in Google Scholar

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.10.1093/bioinformatics/bts199Search in Google Scholar

Kirk, P.M., P.F. Cannon, D.W. Minter and J.A. Stalpers. 2008. Dictionary of fungi. 10th edition. CABI Bioscience, Wallingford. pp. 771.Search in Google Scholar

Kobayashi, Y. and M. Ookubo. 1953. Studies on the marine phycomycetes. Bull. Nat. Sci. Mus. 33: 51–65.Search in Google Scholar

Kobayashi, T., K. Sakaguchi, T. Matsuda, E. Abe, Y. Hama, M. Hayashi, D. Honda, Y. Okita, S. Sugimoto, N. Okino and M. Ito. 2011. Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Appl. Environ. Microbiol. 77: 3870–3876.10.1128/AEM.02664-10Search in Google Scholar

Konno, K. 1972. Studies of Japanese lower aquatic phycomycetes. The Science Report of the Tokyo Kyoiku Daigaku. Sec. B.14: 227–292.Search in Google Scholar

Langdon, C. and E. Onal. 1999. Replacement of living microalgae with spray-dried diets for the marine mussel Mytilus galloprovincialis. Aquaculture 180: 283–294.10.1016/S0044-8486(99)00197-0Search in Google Scholar

Leander, C.A. 2001. Phylogeny of the Labyrinthulomycota. PhD Dissertation. The University of Georgia, Athens.Search in Google Scholar

Leander, C.A. and D. Porter. 2000. Redefining the genus Aplanochytrium (Phylum Labyrinthulomycota). Mycotaxon 76: 439–444.Search in Google Scholar

Leander, C.A. and D. Porter. 2001. The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93: 459–464.10.2307/3761732Search in Google Scholar

Leander, C.A., D. Porter and B.S. Leander. 2004. Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur. J. Protistol. 40: 317–328.10.1016/j.ejop.2004.07.003Search in Google Scholar

Leaño, E.M. and V. Damare. 2012. Labyrinthulomycota. In: (E.B.G. Jones and K.L. Pang, eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin/Boston. pp. 317–328.Search in Google Scholar

Lewis, T.E., P.D. Nichols and T.A. McMeekin. 1999. The biotechnological potential of thraustochytrids. Mar. Biotechnol. 1: 580–587.10.1007/PL00011813Search in Google Scholar

Li, Q., G.Q. Chen, K.W. Fan, F.P. Lu, T. Aki and Y. Jiang. 2009. Screening and characterization of squalene-producing thraustochytrid from Hong Kong mangroves. J. Agric. Food Chem. 57: 4267–4272.10.1021/jf9003972Search in Google Scholar

Liu, Y., P. Singh, Y. Sun, S. Luan and G. Wang. 2014. Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl. Microbiol. Biotechnol. 98: 3241–3255.10.1007/s00253-013-5391-ySearch in Google Scholar

Manikan, V., M.Y.M. Nazir, M.S. Kalil, M.H.M. Isa, A.J.A. Kader, W.M.W. Yusoff and A.A. Hamid. 2015. A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters. Algal Res. 9: 40–47.10.1016/j.algal.2015.02.023Search in Google Scholar

Martins, D.A., L. Custódio, L. Barreira, H. Pereira, R. Ben-Hamadou, J. Varela and K.M. Abu-Salah. 2013. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs 11: 2259–2281.10.3390/md11072259Search in Google Scholar

Milanez, A.I. 1989. Fungos de águas continentais. In: (O. Fidalgo and V.L. Bononi, eds) Técnicas de coleta, preservação e herborização de material botânico. Série Documentos. Instituto de Botânica, São Paulo. pp. 17–20.Search in Google Scholar

Mooney, J.W., E.M. Hirschler, A.K. Kennedy, A.R. Sams and M.E. Van Elswyk. 1998. Lipid and flavour quality of stored breast meat from broilers fed marine algae. J. Sci. Food Agric. 78: 134–140.10.1002/(SICI)1097-0010(199809)78:1<134::AID-JSFA96>3.0.CO;2-0Search in Google Scholar

Moss, S.T. 1986. Biology and phylogeny of the Labyrinthulales and Thraustochytriales. In: (S.T. Moss, ed) The biology of marine fungi. Cambridge University Press, Cambridge. pp 105–129.Search in Google Scholar

Muehlstein, L.K., D. Porter and F.T. Short. 1988. Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar. Biotechnol. 99: 465–472.10.1007/BF00392553Search in Google Scholar

Mycobank (2017): http://www.mycobank.org. Accessed in: February 20, 2017.Search in Google Scholar

Nakazawa, A., Y. Kokubun, H. Matsuura, N. Yonezawa, R. Kose, M. Yoshida, Y. Tanabe, E. Kusuda, D.V. Thang, M. Ueda, D. Honda, A. Mahakhant, K. Kaya and M.M. Watanabe. 2014. TLC screening of thraustochytrid strains for squalene production. J. Appl. Phycol. 26: 29–41.10.1007/s10811-013-0080-xSearch in Google Scholar

Ou, M.C., H.Y. Yeong, K.L. Pang and S.M. Phang. 2016. Fatty acid production of tropical thraustochytrids from Malaysian mangroves. Bot. Mar. 59: 321–338.10.1515/bot-2016-0031Search in Google Scholar

Pan, J., J. del Campo and P.J. Keeling. 2017. Reference tree and environmental sequence diversity of labyrinthulomycetes. J. Eukaryot. Microbiol. 64: 88–96.10.1111/jeu.12342Search in Google Scholar

Papadopoulos, G., C. Goulas, E. Apostolaki and R. Abril. 2002. Effects of dietary supplements of algae, containing polyunsaturated fatty acids, on milk yield and the composition of milk products in dairy ewe. J. Dairy Res. 69: 357–365.10.1017/S0022029902005599Search in Google Scholar

Porter, D. 1989. Phylum Labyrinthulomycota. In: (L. Margulis, J.O. Corliss, M. Melkonian and D.J. Chapman, eds). Handbook of protoctista. Jones and Bartlett Publishers, Boston. pp. 914.Search in Google Scholar

Posada, D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256.10.1093/molbev/msn083Search in Google Scholar

Raghukumar, S. 1988. Schizochytrium mangrovei sp. nov., a thraustochytrid from mangroves in India. Trans. Brit. Mycol. Soc. 90: 627–631.10.1016/S0007-1536(88)80068-8Search in Google Scholar

Raghukumar, S. 1992. Bacterivory: a novel dual role for thrausochytrids in the sea. Mar. Biotechnol. 113: 165–169.10.1007/BF00367650Search in Google Scholar

Raghukumar, S. 2002. Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur. J. Protistol. 38: 127–145.10.1078/0932-4739-00832Search in Google Scholar

Raghukumar, S. 2008. Thraustochytrid marine protist: production of PUFAs and others emerging technologies. Mar. Biotechnol. 10: 631–640.10.1007/s10126-008-9135-4Search in Google Scholar PubMed

Rosa, S.M., M.A. Galvagno and C.G. Vélez. 2006. Primeros aislamientos de thraustochytriales (Labyrinthulomycetes, Heterokonta) de ambientes estuariales y salinos de la Argentina. Darwiniana 44: 81–88.Search in Google Scholar

Scharer, L., D. Knoflach, D.B. Vizoso, G. Rieger and U. Peintner. 2007. Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano. Mar. Biol. 152: 1095–1104.10.1007/s00227-007-0755-4Search in Google Scholar

Schneider, V.J. 1967. Ein neuer mariner phycomycet aus der Kieler Bucht (Thraustochytrium striatum spec. nov.). Aus dem Institut für Meereskunde der Universität Kiel. 23: 16–20.Search in Google Scholar

Scholz, E. 1958. Über morphologische modifikationen bei niederen erdphycomyceten und beschreibung zweier neuer arten von Rhizophydium und Thraustochytrium. Archiv. für Mikrobiologie 29: 354–362.10.1007/BF00571594Search in Google Scholar

Shimidzu, N., M. Goto and W. Wataku. 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Sci. 62: 134–137.10.2331/fishsci.62.134Search in Google Scholar

Siboni, N., D. Rasoulouniriana, E. Ben-Dov, E. Kramarsky-Winter, A. Sivan, Y. Loya, O. Hoegh-Guldberg and A. Kushmaro. 2010. Stramenopile microorganisms associated with the massive coral Favia sp. J. Eukaryot. Microbiol. 57: 236–244.10.1111/j.1550-7408.2010.00469.xSearch in Google Scholar PubMed

Sim, J.S., S. Nakai and W. Guenter. 2000. Egg nutrition and biotechnology. CABI Publishing, Wallingford, UK; New York, USA. pp. 512.Search in Google Scholar

Souza, T.A.B., G. Clemente, F. Moura, F. Garcia and M. Flynn. 2006. Mapeamento de manguezal em Cananéia, São Paulo – Brasil. Environmental and Health World Congress: 691–692.Search in Google Scholar

Sparrow, Jr., F.K. 1936. Biological observations on the marine fungi of woods hole waters. Biol. Bull. 70: 236–263.10.2307/1537470Search in Google Scholar

Sparrow, Jr., F.K. 1960. Aquatic phycomycetes. 2nd revised edition. Ambassador Books, Toronto. pp. 1228.10.5962/bhl.title.5685Search in Google Scholar

Sullivan, B.K., K.L. Robinson, S.M. Trevathan-Tackett, E. Lilje, F.H. Gleason and O. Lilje. 2016. The first isolation and characterization of the protist Labyrinthula sp. in southeastern Australia. J. Eukaryot. Microbiol. 64: 504–513.10.1111/jeu.12387Search in Google Scholar PubMed

Topuz, O.K. 2016. Algail Oil: A novel source of ômega-3 fatty acids for human nutrition. Scientific Bulletin. Series F. Biotechnologies 20: 178–183.Search in Google Scholar

Tsui, C.K., W. Marshall, R. Yokoyama, D. Honda, J.C. Lippmeier, K.D. Craven, P.D. Peterson and M.L. Berbee. 2009. Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol. Phylogenet. Evol. 50: 129–140.10.1016/j.ympev.2008.09.027Search in Google Scholar PubMed

Ulken, A. 1970. Phycomyceten aus der mangrove bei Cananéia (São Paulo, Brasilien). Veröff. Inst. Meeresf. Bremerhaven 12: 313–319.Search in Google Scholar

Ulken, A. 1972. Physiological studies on a phycomycete from the mangrove swamp at Cananéia, São Paulo, Brazil. Veröff. Inst. Meeresf. Bremerhaven 13: 217–230.Search in Google Scholar

Ulken, A. 1990. Marine Thraustochytrids and Chytridiomycetes in the North Sea area and in selected others regions. J. Cramer Publishing, Berlin. pp. 93.Search in Google Scholar

Weete, J.D., H. Kim, S.R. Gandhi, Y. Wang and R. Dute. 1997. Lipids and ultrastructure of Thraustochytrium sp. ATCC 26185. Lipids 32: 839–845.10.1007/s11745-997-0107-zSearch in Google Scholar PubMed

Yang, H.L., C.K. Lu, S.F. Chen, Y.M. Chen and Y.M. Chen. 2010. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar. Biotechnol. 12: 173–185.10.1007/s10126-009-9207-0Search in Google Scholar PubMed

Yokoyama, R. and D. Honda. 2007. Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48: 199–211.10.1007/S10267-006-0362-0Search in Google Scholar

Yokoyama, R., B. Salleh and D. Honda. 2007. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience 48: 329–341.10.1007/S10267-007-0377-1Search in Google Scholar

Received: 2017-7-4
Accepted: 2017-12-6
Published Online: 2018-1-10
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2017-0052/html
Scroll to top button