Home Life Sciences Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
Article
Licensed
Unlicensed Requires Authentication

Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions

  • Adikeshavan Thilagavathy and Varadahally R. Devaraj EMAIL logo
Published/Copyright: July 14, 2016
Become an author with De Gruyter Brill

Abstract

MicroRNAs (miRNAs) play key roles in plant responses to biotic and abiotic stresses by modulating their own expression and a wide array of target mRNAs. Reverse transcription quantitative real-time PCR is a sensitive and widely used method to study miRNA expression profile. Accurate analysis and interpretation of results require the selection of an appropriate reference gene. Reference genes selected should have a constant expression level under different stress conditions. Six reference candidates, including two miRNAs (miRNA 156 and miRNA 172), an rRNA (5S rRNA), a snRNA (U6) and two protein coding genes (actin and protein phosphatase 2A), were selected for normalization of miRNA expression in Lablab purpureus. The expression stability of candidate reference genes was investigated in ten samples and analysed using NormFinder, BestKeeper and hkgFinder softwares. The analyses suggested that miRNA 156 is the appropriate reference gene, as it had better expression stability than protein-coding genes, and other non-coding RNAs.

Acknowledgements

Adikeshavan Thilagavathy acknowledges the Department of Science and Technology (DST), New Delhi, India, for INSPIRE Fellowship (Code No: IF120387). The authors acknowledge Department of Biochemistry, Indian Institute of Science, for providing Central instrumentation facility to carry out RT-qPCR using Biorad iQ5 Multicolor Real Time PCR Detection System.

References

Andersen C.L., Jensen J.L. & Orntoft T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64: 5245–5250.10.1158/0008-5472.CAN-04-0496Search in Google Scholar

Borowski J.M., Galli V., Messias R.S., Perin E.C., Buss J.H., dos Anjos e Silva S.D. & Rombaldi C.V. 2014. Selection of candidate reference genes for real-time PCR studies in lettuce under abiotic stresses. Planta 239: 1187–1200.10.1007/s00425-014-2041-2Search in Google Scholar

Brunner A.M., Yakovlev I.A. & Strauss S.H. 2004. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 4: 14.10.1186/1471-2229-4-14Search in Google Scholar

Bustin S.A. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems, J. Mol. Endocrinol. 29: 23–39.10.1677/jme.0.0290023Search in Google Scholar

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J. & Wittwer C.T. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611–622.10.1373/clinchem.2008.112797Search in Google Scholar

Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R., Lao K.Q., Livak K.J. & Guegler K.J. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179.10.1093/nar/gni178Search in Google Scholar

Chen X., Zhang Z., Liu D., Zhang K., Li A. & Mao L. 2010. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J. Integr. Plant Biol. 52: 946–951.10.1111/j.1744-7909.2010.00987.xSearch in Google Scholar

Cushman J.C. & Bohnert H.J. 2000. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3: 117–124.10.1016/S1369-5266(99)00052-7Search in Google Scholar

Czechowski T., Stitt M., Altmann T., Udvardi M.K. & Scheible W.R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139: 5–17.10.1104/pp.105.063743Search in Google Scholar PubMed PubMed Central

D’Souza M.R. & Devaraj V.R. 2010. Biochemical responses of hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol. Plant. 32: 341–353.10.1007/s11738-009-0412-2Search in Google Scholar

D’Souza M.R. & Devaraj V.R. 2011. Specific and non-specific responses of hyacinth bean (Dolichos lablab) to drought stress. Indian J. Biotechnol. 10: 130–139.Search in Google Scholar

Feng H., Huang X., Zhang Q., Wei G., Wang X. & Kang Z. 2012. Selection of suitable inner reference genes for relative quantification expression of microRNA in wheat. Plant Physiol. Biochem. 51: 116–122.10.1016/j.plaphy.2011.10.010Search in Google Scholar PubMed

Fuller D.Q. 2003. African crops in prehistoric South Asia: a critical review, pp. 239–271. In: Neumann K., Butler A. & Kahlheber S. (eds), Food, Fuel and Fields; Progress in Africa Archaeobotany. Heinrich-Barth-Institut, Cologne.Search in Google Scholar

Gutierrez L., Mauriat M., Guenin S., Pelloux J., Lefebvre J.F., Louvet R., Rusterucci C., Moritz T., Guerineau F., Bellini C. & Wuytswinkel O.V. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. 6: 609–618.10.1111/j.1467-7652.2008.00346.xSearch in Google Scholar PubMed

Guenin S., Mauriat M., Pelloux J., Wuytswinkel O.V., Bellini C. & Gutierrez L. 2009 Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 60: 487–493.10.1093/jxb/ern305Search in Google Scholar PubMed

Kokila S. 2015. Molecular characterization of transcripts induced under drought and salt stress from Lablab purpureus (hyacinth bean). PhD Thesis, Department of Biochemistry, Central College Campus, Bangalore University, Bangalore, India.Search in Google Scholar

Kong W., Zhao J.J., He L. & Cheng J.Q. 2009. Strategies for profiling microRNA expression. J. Cell. Physiol. 218: 22–25.10.1002/jcp.21577Search in Google Scholar PubMed

Kou S.J., Wu X.M., Liu Z., Liu Y.L., Xu Q. & Guo W.W. 2012. Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues. Plant Cell Rep. 31: 2151–2163.10.1007/s00299-012-1325-xSearch in Google Scholar PubMed

Kulcheski F.R., Marcelino-Guimaraes F.C., Nepomuceno A.L., Abdelnoor R.V. & Margis R. 2010. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal. Biochem. 406: 185–192.10.1016/j.ab.2010.07.020Search in Google Scholar PubMed

Li Q.Q., Skinner J. & Bennett J.E. 2012. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment. BMC Mol. Biol. 13: 22.10.1186/1471-2199-13-22Search in Google Scholar PubMed PubMed Central

Libault M., Thibivilliers S., Bilgin D., Radwan O., Benitez M., Clough S.J. & Stacey G. 2008. Identification of four soybean reference genes for gene expression normalization. Plant Genome 1: 44–54.10.3835/plantgenome2008.02.0091Search in Google Scholar

Lin Y.L. & Lai Z.X. 2013. Evaluation of suitable reference genes for normalization of microRNA expression by real-time reverse transcription PCR analysis during longan somatic embryogenesis. Plant Physiol. Biochem. 66: 20–25.10.1016/j.plaphy.2013.02.002Search in Google Scholar PubMed

Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402–408.10.1006/meth.2001.1262Search in Google Scholar PubMed

Luo X., Shi T., Sun H., Song J., Ni Z. & Gao Z. 2014. Selection of suitable inner reference genes for normalisation of microRNA expression response to abiotic stresses by RT-qPCR in leaves, flowers and young stems of peach. Scientia Horticulturae 165: 281–287.10.1016/j.scienta.2013.10.030Search in Google Scholar

Maass B.L., Knox M.R., Venkatesha S.C., Angessa T.T., Ramme S. & Pengelly B.C. 2010. Lablab purpureus – a crop lost for Africa? Tropical Plant Biol. 3: 123–135.10.1007/s12042-010-9046-1Search in Google Scholar

Peltier H.J. & Latham G.J. 2008. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14: 844–852.10.1261/rna.939908Search in Google Scholar

Pfaffl M.W., Tichopad A., Prgomet C. & Neuvians T.P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26: 509–515.10.1023/B:BILE.0000019559.84305.47Search in Google Scholar

Rodriguez M., Canales E. & Borras-Hidalgo O. 2005. Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada 22: 1–10.Search in Google Scholar

Schmittgen T.D. & Zakrajsek B.A. 2000. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46: 69–81.10.1016/S0165-022X(00)00129-9Search in Google Scholar

Selvey S., Thompson E.W., Matthaei K., Lea R.A., Irving M.G. & Griffiths L.R. 2001. β-Actin – an unsuitable internal control for RT-PCR. Mol. Cell. Probes 15: 307–311.10.1006/mcpr.2001.0376Search in Google Scholar

Shi R. & Chiang V.L. 2005. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39: 519–525.10.2144/000112010Search in Google Scholar

Sunkar R., Chinnusamy V., Zhu J. & Zhu J.K. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12: 301–309.10.1016/j.tplants.2007.05.001Search in Google Scholar

Thellin O., Zorzi W., Lakaye B., Borman B.D., Coumans B., Hennen G., Grisar T., Igout A. & Heinen E. 1999. Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75: 291–295.10.1016/S0168-1656(99)00163-7Search in Google Scholar

Udvardi M.K., Czechowski T. & Scheible W.R. 2008. Eleven golden rules of quantitative RT-PCR. Plant Cell 20: 1736–1737.10.1105/tpc.108.061143Search in Google Scholar PubMed PubMed Central

Varkonyi-Gasic E., Wu R., Wood M., Walton E.F. & Hellens R.P. 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12.10.1186/1746-4811-3-12Search in Google Scholar PubMed PubMed Central

Yao L.M., Wang B., Cheng L.J. & Wu T.L. 2013. Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8: e58108.10.1371/journal.pone.0058108Search in Google Scholar PubMed PubMed Central

Abbreviations
Cq

quantification cycle

miRNA

microRNA

PP2A

protein phosphatase 2A

RT-qPCR

reverse transcription quantitative PCR

SD

standard deviation.

Received: 2015-12-15
Accepted: 2016-6-15
Published Online: 2016-7-14
Published in Print: 2016-6-1

©2016 Institute of Molecular Biology, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
  3. Cellular and Molecular Biology
  4. First report of microorganisms of Caucasus glaciers (Georgia)
  5. Cellular and Molecular Biology
  6. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris
  7. Botany
  8. Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
  9. Botany
  10. No confirmation for previously suggested presence of diploid cytotypes of Sesleria (Poaceae) on the Balkan Peninsula
  11. Botany
  12. RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods
  13. Botany
  14. Nucleoli migration coupled with cytomixis
  15. Cellular and Molecular Biology
  16. Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
  17. Zoology
  18. The fractal nature of the latitudinal biodiversity gradient
  19. Zoology
  20. A new species of Neoribates (Neoribates) (Acari: Oribatida: Parakalummidae) with key to the Neotropical species of the subgenus
  21. Zoology
  22. Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
  23. Zoology
  24. Heteroptera (Insecta: Hemiptera) of the peat bogs of Belarusian Lakeland
  25. Cellular and Molecular Biology
  26. Cloning of monoacylglycerol o-acyltransferase 2 cDNA from a silkworm, Bombyx mori
  27. Zoology
  28. Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
  29. Zoology
  30. Status of the rose-ringed parakeet Psittacula krameri in Lisbon, Portugal
  31. Zoology
  32. Considerations on the vulnerability of the Eurasian water shrew Neomys fodiens to the presence of introduced brown trout Salmo trutta
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0091/html
Scroll to top button