Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
-
Lenka Hubáčková
, Vanda Rádková , Jindřiška Bojková , Vít Syrovátka , Vendula Polášková , Jana Schenková and Michal Horsák
Abstract
Habitat specialists and generalists are known to differ in their width of environmental tolerance and their representation can vary along with the ecological contrast of habitats. In this study we explore factors shaping patterns of species richness and abundance of aquatic macroinvertebrate habitat specialists and generalists at isolated spring fens, separately for spring patch and spring brook mesohabitats at each site. We also examined habitat contrast of these unique island-like communities by the comparison of spring fen specialists and habitat generalists shared between the two spring fen mesohabitats and the nearest stream to each of 13 selects fen sites. Aquatic macroinvertebrates (Clitellata, Ephemeroptera, Plecoptera, Trichoptera, and Diptera) were investigated at 62 isolated spring fens, with 357 taxa identified in more than 172,000 individuals collected. We found that specialists experienced a stronger relation to local environmental conditions (i.e. the amount of dissolved oxygen and water conductivity) at both spring mesohabitats than generalists, primarily responding to fen habitat size. In contrast, responses of species abundances at spring patches and spring brooks differed as the abundances were controlled by the amount of oxygen in spring patches and by habitat size in spring brooks. Based on Trichoptera and Diptera assemblages we found a similar contrast between both spring fen sites and nearby streams. Our results suggest a higher resilience of specialist populations in well oxygenated sites and their competitive advantage over generalists at these sites, which stresses the importance to prevent any significant decrease of oxygenation (e.g., by eutrophication or drainage), especially in spring patches.
Acknowledgements
This study was supported by the research project of the Czech Science Foundation (P505/11/0779 and P505/16-03881S). We are grateful to two anonymous referees for valuable comments to the previous draft of this study.
References
Anderson M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26 (1): 32–46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x10.1111/j.1442-9993.2001.01070.pp.xSearch in Google Scholar
Anderson M.J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62 (1): 245–253. DOI: 10.1111/j.1541-0420.2005.00440.x10.1111/j.1541-0420.2005.00440.xSearch in Google Scholar PubMed
Bender D.J. & Fahrig L. 2005. Matrix structure obscures the relationship between interpatch movement and patch size and isolation. Ecology 86 (4): 1023–1033. DOI: 10.1890/03-076910.1890/03-0769Search in Google Scholar
Bezděk A., Jaroš J. & Spitzer K. 2006. Spatial distribution of ground beetles (Coleoptera: Carabidae) and moths (Lepidoptera) in the Mrtvý luh bog, Šumava Mts (Central Europe): a test of habitat island community. Biodivers. Conserv. 15 (1): 395–409. DOI: 10.1007/s10531-005-3435-z10.1007/s10531-005-3435-zSearch in Google Scholar
Bojková J., Schenková J., Horsák M. & Hájek M. 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667 (1): 159–171. DOI: 10.1007/s10750-011-0634-310.1007/s10750-011-0634-3Search in Google Scholar
Brändle M., Westermann I. & Brandl R. 2005. Gene flow between populations of two invertebrates in springs. Freshwater Biol. 50 (1): 1–9. DOI: 10.1111/j.1365-2427.2004.01288.x10.1111/j.1365-2427.2004.01288.xSearch in Google Scholar
Brouat C., Chevallier H., Meusnier S., Noblecourt T. & Rasplus J.Y. 2004. Specialization and habitat: spatial and environmental effects on abundance and genetic diversity of forest generalist and specialist Carabus species. Mol. Ecol. 13 (7): 1815–1826. DOI: 10.1111/j.1365-294X.2004.02206.x10.1111/j.1365-294X.2004.02206.xSearch in Google Scholar PubMed
Buffagni A., Cazzola M., López-Rodríguez M.J., Alba-Tercedor J. & Armanini D.G. 2009. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 3, Ephemeroptera. Pensoft, Sofia-Moscow, 254 pp. ISBN-13: 9789546425089Search in Google Scholar
Cantonati M., Gerecke R. & Bertuzzi E. 2006. Springs of the Alps–sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562 (1): 59–96. DOI: 10.1007/s10750-005-1806-910.1007/s10750-005-1806-9Search in Google Scholar
Carl P. & Peterson B.G. 2010. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis. R Package, version 1.0.2.1. http://braverock.com/R/Search in Google Scholar
Chislock M.F., Doster E., Zitomer R.A. & Wilson A.E. 2013. Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge 4 (4): 10.Search in Google Scholar
Collinge S.K. & Palmer T.M. 2002. The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands. Landscape Ecol. 17 (7): 647–656. DOI: 10.1023/A:102153630219510.1023/A:1021536302195Search in Google Scholar
Cook R.D. 1977. Detection of influential observation in linear regression. Technometrics 19 (1): 15–18. DOI: 10.2307/1268 24910.2307/1268 249Search in Google Scholar
Devictor V., Clavel J., Julliard R., Lavergne S., Mouillot D., Thuiller W., Venail P., Villéger S. & Mouquet N. 2010. Defining and measuring ecological specialization. J. Appl. Ecol. 47 (1): 15–25. DOI: 10.1111/j.1365-2664.2009.01744.x10.1111/j.1365-2664.2009.01744.xSearch in Google Scholar
Devictor V., Julliard R. & Jiguet F. 2008. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117 (4): 507–514. DOI: 10.1111/j.0030-1299.2008.16215.x10.1111/j.0030-1299.2008.16215.xSearch in Google Scholar
Dyer L.A., Singer M.S., Lill J.T., Stireman J.O., Gentry G.L., Marquis R.J., Ricklefs R.E., Greeney H.F., Wagner D.L., Morais H.C., Diniz I.R., Kursar T.A. & Coley P.D. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448 (7154): 696–699. DOI: 10.1038/nature0588410.1038/nature05884Search in Google Scholar PubMed
ESRI 2003. Arcview GIS, version 8.3. Environmental Systems Research Institute Inc., Redlands. http://www.esri.comSearch in Google Scholar
Ferry-Graham L.A., Bolnick D.I. & Wainwright P.C. 2002. Using functional morphology to examine the ecology and evolution of specialization. Integr. Comp. Biol. 42 (2): 265–277. DOI: 10.1093/icb/42.2.265.10.1093/icb/42.2.265Search in Google Scholar PubMed
Funk A., Schiemer F. & Reckendorfer W. 2013. Metacommunity structure of aquatic gastropods in a river floodplain: the role of niche breadth and drift propensity. Freshwater Biol. 58 (12): 2505–2516. DOI: 10.1111/fwb.1222810.1111/fwb.12228Search in Google Scholar
Futuyma D.J. & Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19: 207–233. DOI: 10.1146/annurev.es.19.110188.00123110.1146/annurev.es.19.110188.001231Search in Google Scholar
Graf W., Lorenz A.W., Tierno de Figueroa J.M., Lucke S., Lopez-Rodriguez M.J. & Davies C. 2009. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 2, Plecoptera. Pensoft, Sofia-Moscow, 262 pp. ISBN-13: 9789546424792Search in Google Scholar
Graf W., Murphy J., Dahl J., Zamora-Muńoz C. & López-Rodríguez M.J. 2008. Distribution and Ecological Preferences of European Freshwater Organisms. Volume 1, Trichoptera. Pensoft, Sofia-Moscow, 388 pp. ISBN-13: 9789546424419Search in Google Scholar
Hájek M., Horsák M., Hájková P. & Dítě D. 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 8 (2): 97–114. DOI: 10.1016/j.ppees.2006.08.00210.1016/j.ppees.2006.08.002Search in Google Scholar
Hájek M., Horsák M., Tichý L., Hájková P. & Dítě D. & Jamrichová E. 2011. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J. Biogeogr. 38 (4): 742–755. DOI: 10.1111/j.1365-2699.2010.02424.x10.1111/j.1365-2699.2010.02424.xSearch in Google Scholar
Hájková P., Wolf P. & Hájek M. 2004. Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Ann. Bot. Fennici 41: 249–262.Search in Google Scholar
Horsák M. 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. J. Biogeogr. 33 (1): 98–107. DOI: 10.1111/j.1365-2699.2005.01359.x10.1111/j.1365-2699.2005.01359.xSearch in Google Scholar
Horsák M., Hájek M., Spitale D., Hájková P., Dítě D. & Nekola J.C. 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93 (5): 1106–1114. DOI: 10.1890/0012-9658-93.5.110610.1890/0012-9658-93.5.1106Search in Google Scholar PubMed
Horsák M., Rádková V., Syrovátka V., Bojková J., Kroupalová V., Schenková J. & Zajacová J. 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. J. Biogeogr. 42 (11): 2112–2121. DOI: 10.1111/jbi.1256910.1111/jbi.12569Search in Google Scholar
Hubbs C. 1995. Perspectives: springs and spring runs as unique aquatic systems. Copeia 1995 (4): 989–991. DOI: 10.2307/144705310.2307/1447053Search in Google Scholar
Joosten H. & Clarke D. 2002. Wise use of mires and peatlands: background and principles including a framework for decision making. International Mire Conservation Group and International Peat Society, Saarijärvi, Finland, 303 pp. ISBN: 951-97744-8-3Search in Google Scholar
Kolasa J. & Li B.L. 2003. Removing the confounding effect of habitat specialization reveals the stabilizing contribution of diversity to species variability. Proc. Roy. Soc. B – Biol. Sci. 270 (Suppl. 2): S198–S201. DOI: 10.1098/rsbl.2003.005910.1098/rsbl.2003.0059Search in Google Scholar PubMed PubMed Central
Křoupalová V., Opravilová V., Bojková J. & Horsák M. 2013. Diversity and assemblage patterns of microorganisms structured by the groundwater chemistry gradient in spring fens. Ann. Limnol. – Int. J. Lim. 49 (2013): 207–223. DOI: 10.1051/limn/201305610.1051/limn/2013056Search in Google Scholar
Leibold M.A., Holyoak M., Mouquet N., Amarasekare P., Chase J.M., Hoopes M.F., Holt R.D., Shurin J.B., Law R., Tilman D., Loreau M. & Gonzalez A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7 (7): 601–613. DOI: 10.1111/j.1461-0248.2004.00608.x10.1111/j.1461-0248.2004.00608.xSearch in Google Scholar
Lövei G.L., Magura T., Tóthmérész B. & Ködöböcz V. 2006. The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Global Ecol. Biogeogr. 15 (3): 283–289. DOI: 10.1111/j.1466-8238.2005.00221.x10.1111/j.1466-8238.2005.00221.xSearch in Google Scholar
MacArthur R.H. & Wilson E.O. 1967. The Theory of Island Biogeography. Princeton Landmarks in Biology Series. Princeton Univ Press, Princeton, 203 pp. ISBN: 0691088365, 9780691088365Search in Google Scholar
McCabe D.J. 1998. Biological communities in springbrooks, pp. 221–228. In: Botosaneanu L. (ed), Studies in Crenobiology: The Biology of Springs and Springbrooks, Backhuys, Leiden, 261 pp. ISBN: 90-73348-04-8Search in Google Scholar
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. & Wagner H. 2013. Vegan: Community ecology package, R package version 2.0-7.Search in Google Scholar
Omelková M., Syrovátka V., Kroupalová V., Rádková V., Bojková J., Horsák M., Zhai M. & Helešic J. 2013. Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Can. J. Fish. Aquat. Sci. 70 (5): 689–700. DOI: 10.1139/cjfas-2013-002610.1139/cjfas-2013-0026Search in Google Scholar
Pandit S.N., Kolasa J. & Cottenie K. 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90 (8): 2253–2262. DOI: 10.1890/08-0851.110.1890/08-0851.1Search in Google Scholar PubMed
Prevedello J.A. & Vieira M.V. 2010. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19 (5): 1205–1223. DOI: 10.1007/s10531-009-9750-z10.1007/s10531-009-9750-zSearch in Google Scholar
R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2013, Vienna. Austria. http://www.R-project.orgSearch in Google Scholar
Rádková V., Bojková J., Kroupalová V., Schenková J., Syrovátka V. & Horsák M. 2014a. The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biol. 59 (11): 2256–2267. DOI: 10.1111/fwb.1242810.1111/fwb.12428Search in Google Scholar
Rádková V., Syrovátka V., Bojková J., Schenková J., Kroupalová V. & Horsák M. 2014b. The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica 47: 52–61. DOI: 10.1016/j.limno.2014.03.00110.1016/j.limno.2014.03.001Search in Google Scholar
Ricketts T.H. 2001. The matrix matters: effective isolation in fragmented landscapes. Am. Nat. 158 (1): 87–99. DOI: 10.1086/32086310.1086/320863Search in Google Scholar PubMed
Ricklefs R.E. 1987. Community diversity: relative roles of local and regional processes. Science 235 (4785): 167–171. DOI: 10.1126/science.235.4785.16710.1126/science.235.4785.167Search in Google Scholar PubMed
Rozkošný R. & Kniepert F.W. 2000. Insecta: Diptera: Stratiomyidae, Tabanidae. Series: Süsswasserfauna von Mitteleuropa 21 (18-19), Spektrum Akademischer Verlag Heidelberg, Berlin, 204 pp. ISBN: 3827409861, 9783827409867Search in Google Scholar
Smith H., Wood P.J. & Gunn J. 2003. The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems. Hydrobiologia 510 (1): 53–66. DOI: 10.1023/B:HYDR.0000008501.55798.2010.1023/B:HYDR.0000008501.55798.20Search in Google Scholar
Spitze, K. & Sadler, T.D. 1996. Evolution of a generalist genotype: multivariate analysis of the adaptiveness of phenotypic plasticity. Am. Nat. 148 (Suppl.): S108–S123.10.1086/285905Search in Google Scholar
Šporka F. 2003. Vodné bezstavovce (makroevertebrata) Slovenska, súpis druhov a autekologické charakteristiky [Slovak aquatic macroinvertebrates, checklist and catalogue of autecological notes]. Slovenský hydrometeorologický ústav, Bratislava, 590 pp. ISBN: 80-88907-37-3Search in Google Scholar
Van der Kamp G. 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. J. Kans. Entomol. Soc. 68 (2 Suppl.): 4–17.Search in Google Scholar
Wagner R., Fisher J. & Schnabel S. 1998. The Dipteran community of Central European springs, a summary, pp. 157–165. In: Botosaneanu L. (ed.), Studies in Crenobiology: The Biology of Springs and Springbrooks, Backhuys, Leiden, 261 pp. ISBN-10: 90-73348-0-48, ISBN-13: 978-90-73348-0-42Search in Google Scholar
Watson D.M. 2002. A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. J. Biogeogr. 29 (5): 823–834. DOI: 10.1046/j.1365-2699.2002.00726.x10.1046/j.1365-2699.2002.00726.xSearch in Google Scholar
Wilk M.B. & Gnanadesikan R. 1968. Probability plotting methods for the analysis of data. Biometrika 55 (1): 1–17. DOI: 10.1093/biomet/55.1.110.1093/biomet/55.1.1Search in Google Scholar
Williams D.D. & Williams N.E. 1999. Canadian Springs: postglacial development of the invertebrate fauna, pp. 447–467. In: Batzer D.P., Rader R. & Wissinger A. (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management, John Wiley and Sons, New York, 1120 pp. ISBN: 0471292583, 978-0-471-29258-6Search in Google Scholar
Zhai M., Novácek O., Výravský D., Syrovátka V., Bojková J. & Helešic J. 2015. Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745 (1): 225–239. DOI: 10.1007/s10750-014-2104-110.1007/s10750-014-2104-1Search in Google Scholar
©2016 Institute of Zoology, Slovak Academy of Sciences
Articles in the same Issue
- Cellular and Molecular Biology
- Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
- Cellular and Molecular Biology
- First report of microorganisms of Caucasus glaciers (Georgia)
- Cellular and Molecular Biology
- Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris
- Botany
- Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
- Botany
- No confirmation for previously suggested presence of diploid cytotypes of Sesleria (Poaceae) on the Balkan Peninsula
- Botany
- RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods
- Botany
- Nucleoli migration coupled with cytomixis
- Cellular and Molecular Biology
- Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
- Zoology
- The fractal nature of the latitudinal biodiversity gradient
- Zoology
- A new species of Neoribates (Neoribates) (Acari: Oribatida: Parakalummidae) with key to the Neotropical species of the subgenus
- Zoology
- Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
- Zoology
- Heteroptera (Insecta: Hemiptera) of the peat bogs of Belarusian Lakeland
- Cellular and Molecular Biology
- Cloning of monoacylglycerol o-acyltransferase 2 cDNA from a silkworm, Bombyx mori
- Zoology
- Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
- Zoology
- Status of the rose-ringed parakeet Psittacula krameri in Lisbon, Portugal
- Zoology
- Considerations on the vulnerability of the Eurasian water shrew Neomys fodiens to the presence of introduced brown trout Salmo trutta
Articles in the same Issue
- Cellular and Molecular Biology
- Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
- Cellular and Molecular Biology
- First report of microorganisms of Caucasus glaciers (Georgia)
- Cellular and Molecular Biology
- Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris
- Botany
- Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
- Botany
- No confirmation for previously suggested presence of diploid cytotypes of Sesleria (Poaceae) on the Balkan Peninsula
- Botany
- RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods
- Botany
- Nucleoli migration coupled with cytomixis
- Cellular and Molecular Biology
- Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
- Zoology
- The fractal nature of the latitudinal biodiversity gradient
- Zoology
- A new species of Neoribates (Neoribates) (Acari: Oribatida: Parakalummidae) with key to the Neotropical species of the subgenus
- Zoology
- Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
- Zoology
- Heteroptera (Insecta: Hemiptera) of the peat bogs of Belarusian Lakeland
- Cellular and Molecular Biology
- Cloning of monoacylglycerol o-acyltransferase 2 cDNA from a silkworm, Bombyx mori
- Zoology
- Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
- Zoology
- Status of the rose-ringed parakeet Psittacula krameri in Lisbon, Portugal
- Zoology
- Considerations on the vulnerability of the Eurasian water shrew Neomys fodiens to the presence of introduced brown trout Salmo trutta