Home Me11b receptor mediated action of melatonin in regulation of lung associated immune system (LAIS) of Perdicula asiatica: An in vitro study
Article
Licensed
Unlicensed Requires Authentication

Me11b receptor mediated action of melatonin in regulation of lung associated immune system (LAIS) of Perdicula asiatica: An in vitro study

  • Rajesh Kumar Kharwar EMAIL logo , Chandana Haldar and Sweta Singh
Published/Copyright: December 12, 2015
Become an author with De Gruyter Brill

Abstract

The pineal hormone melatonin plays an important role in immunomodulation of avian species. These im­munomodulatory effects of melatonin are known to be mediated by three membrane bound receptors found in birds, Mel1a, Mel1b and Mel1c- However, specific involvement of these receptors in mediating immunomodulatory effects of melatonin in Lung Associated Immune System (LAIS) remains unexplored till date. The aim of the present study was to check the specific melatonin receptor subtype involved in regulation of LAIS. For this purpose, we used luzindole, a non selective and 4P-PDOT, a selective Mel1b receptor antagonist under in vitro condition to assess their specific potency towards melatonin induced cellular immunity in the lung tissue of Perdicula asiatica. Melatonin enhanced proliferation of lymphocytes isolated from lung tissue and up-regulated both receptor types (Mel1a and Mel1b) on physiological doses while higher doses decreased the proliferation and down regulated the expression of both receptors. Luzindole decreased proliferation of lung lymphocytes and down-regulated the expression of both receptors in a dose dependent manner while 4P-PDOT decreased proliferation of lymphocytes isolated from lung and down-regulated the expression of Mel1b receptor subtype only. Proliferation rate of lymphocytes isolated from lung tissue followed more the expression pattern of Mel1b than the Mel1a. Thus, we may suggest that Mel1b might be involved in cell mediated immunity in lung of P. asiatica to a greater extent than Mel1a.

References

Ahmad R. & Haldar C. 2010. Melatonin and androgen receptor expression interplay modulates cell mediated immunity in tropical rodent Funambulus pennanti. Scand. J. Immunol. 71 (6): 420-430. DOI: 10.1111/j.1365-3083.2010.02396.x 10.1111/j.1365-3083.2010.02396.xSearch in Google Scholar

Ahmad R., Haldar C. & Gupta S. 2012. Melatonin membrane receptor type MT1 modulates cell mediated immunity in seasonally breeding tropical rodent Funambulus pennanti. NeuroImmunoModulation. 19 (1): 50-59. DOI: 10.1159/00032729310.1159/000327293Search in Google Scholar

Atre D. & Blumenthal E.J. 1998. Melatonin: immune modulation of spleen cells in young, middle-aged and senescent mice. Mech. Ageing Dev. 103 (3): 255-268. DOI: 10.1016/S0047-6374(98)00046-310.1016/S0047-6374(98)00046-3Search in Google Scholar

Bruning J.L. & Knitz B.L. 1977. Computational Hand Book of Statistics. 2nd ed. Scott, Foresman and Company, Glenview (Illinois), 308 pp. ISBN: 0673150143, 9780673150141Search in Google Scholar

Carrillo-Vico A., Reiter R.J., Lardone P.J., Herrera J.L., Fernández- Montesinos R., Guerrero J.M. & Pozo D. 2006. The modulatory role of melatonin on immune responsiveness. Curr. Opin. Invest. Drugs 7 (5): 423-431. PMID: 16729718Search in Google Scholar

Champney T.H., Allen G.C., Zannelli M. & L.A. 1998. Timedependent effects of melatonin on immune measurements in male Syrian hamsters. J. Pineal Res. 25 (3): 142-146. DOI: 10.1111/j.1600-079X.1998.tb00552.x 10.1111/j.1600-079X.1998.tb00552.xSearch in Google Scholar

Dubocovich M.L., Mosana M.I., Jacob S. & Sauri D.M. 1997. Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn-Schimiedeberg’s Arch. Pharmacol. 355 (3): 365-375. DOI: 10.1007/PL0000495610.1007/PL00004956Search in Google Scholar PubMed

Dubocovich M.L., Rivera-Bermudez M.A., Gerdin M.J. & Masana M.I. 2003. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front. Biosci. 8: D1093-1108. DOI: 10.2741/108910.2741/1089Search in Google Scholar PubMed

Dubocovich M.L., Yun K., Al-Ghoul W.M., Benloucif S. & Masana M.I. 1998. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J. 12 (12): 1211-1220. PMID: 973772410.1096/fasebj.12.12.1211Search in Google Scholar PubMed

Drazen D.L., Bilu D., Bilbo S.D. & Nelson R.J. 2001. Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280 (5): R1476-R1482. PMID: 1129477110.1152/ajpregu.2001.280.5.R1476Search in Google Scholar PubMed

Drazen D.L. & Nelson R.J. 2001. Melatonin receptor subtype MT2 (Mel 1b) and not MT1 (Mel1a) is associated with melatonin-induced enhancement of cell mediated and humoral immunity. Neuroendocrinology 74 (3): 178-184. DOI: 10.1159/00005468410.1159/000054684Search in Google Scholar PubMed

Ebisawa T., Karne S., Lerner M.R. & Reppert S.M. 1994. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc. Natl. Acad. Sci. USA 91 (13): 6133-6137. PMID: 751704210.1073/pnas.91.13.6133Search in Google Scholar PubMed PubMed Central

Ferguson S.S. 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53 (1): 1-24.Search in Google Scholar

García-Maurino S., Pozo D., Calvo J.R., Guerrero J.M. 2000. Correlation between nuclear melatonin receptor expression and enhanced cytokine production in human lymphocytic and monocytic cell lines. J. Pineal Res. 29 (3):129-137. DOI: 10.1034/j.1600-079X.2000.290301.x 10.1034/j.1600-079X.2000.290301.xSearch in Google Scholar

Gauer F., Masson-Pevet M. & Pevet P. 1993. Melatonin receptor density is regulated in rat pars tuberalis and suprachiasmatic nuclei by melatonin itself. Brain. Res. 602 (1): 153-156. PMID: 838356910.1016/0006-8993(93)90256-MSearch in Google Scholar

Gerdin M.J., Masana M.I., Rivera-Bermudez M.A., Hudson R.L., Earnest D.J. & Gillette M.U. 2004. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J. 18 (14): 1646-1656. DOI: 10.1096/fj.03-1339com 10.1096/fj.03-1339comSearch in Google Scholar PubMed

Guerrero J.M. & Reiter R.J. 1992. A brief survey of pineal glandimmune system interrelationships. Endocr. Res. 18 (2): 91-113. DOI: 10.1080/0743580920903540110.1080/07435809209035401Search in Google Scholar PubMed

Guerrero J.M. & Reiter R.J. 2002. Melatonin immune system relationship. Curr. Top. Med. Chem. 2 (2): 167-179. DOI: 10.2174/156802602339433510.2174/1568026023394335Search in Google Scholar PubMed

Karasek M., Gruszka A., Lawnicka H., Kunert-Radek J. & Pawlikowski M. 2003. Melatonin inhibits growth of diethylstilbestrol- induced prolactin secreting pituitary tumor in vitro: possible involvement of nuclear RZR/ROR receptors. J. Pineal Res. 34 (4): 294-296. DOI: 10.1034/j.1600-079X.2003.00046.x 10.1034/j.1600-079X.2003.00046.xSearch in Google Scholar

Kharwar R.K. & Haldar C. 2011a. Anatomical and histological profile of bronchus-associated lymphoid tissue and localization of melatonin receptor types (Mel1a and Mel1b) in the lung-associated immune system of a tropical bird, Perdicula asiatica. Acta Histochem. 113 (3): 333-339. DOI: 10.1016/j.acthis.2010.01.00310.1016/j.acthis.2010.01.003Search in Google Scholar PubMed

Kharwar R.K. & Haldar C. 2011b. Reproductive phase dependent variation in Lung associated immune system (LAIS) and expression of melatonin receptors (Mel1a and Mel1b) in lung of a tropical bird, Perdicula asiatica. Can. J. Zool. 89 (1): 10-18. DOI: 10.1139/Z10-09110.1139/Z10-091Search in Google Scholar

Kharwar R.K. & Haldar C. 2011c. Photoperiod regulates lung associated immunological parameters and melatonin receptor (Mel1a and Mel1b) in lungs of a tropical bird, Perdicula asiatica. Photochem. Photobiol. 87 (2): 427-432. DOI: 10.1111/j.1751-1097.2010.00883.x 10.1111/j.1751-1097.2010.00883.xSearch in Google Scholar PubMed

Kharwar R.K. & Haldar C. 2011d. Reproductive phase dependent daily variation in melatonin receptors (Mel1a and Mel1b), androgen receptor (AR) and lung associated immunity of Perdicula asiatica. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159 (2): 119-124. DOI: 10.1016/j.cbpa.2011.02.00310.1016/j.cbpa.2011.02.003Search in Google Scholar PubMed

Kharwar R.K. & Haldar C. 2012. Annual variation in lung associated immunity and season dependent invasion of Alternaria alternata in lungs of Indian jungle bush quail, Perdicula asiatica. Anim. Biol. 62 (3): 301-314. DOI: 10.1163/157075611X 618237Search in Google Scholar

Kliger C.A., Gehad A.E., Hulet R.M., Roush W.B., Lillehoj H.S. & Mashaly M.M. 2000. Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens. Poult. Sci. 79 (1):18-25. DOI: 10.1093/ps/79.1.1810.1093/ps/79.1.18Search in Google Scholar

Laitinen J.T., E. Castren E., Vakkuri O. & Saavedra J.M. 1989. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus. Endocrinology 124 (3): 1585-1587. DOI: 10.1210/endo-124-3-158510.1210/endo-124-3-1585Search in Google Scholar

Maestroni G.J. 1993. The immuno neuroendocrine role of melatonin. Mini-review. J. Pineal Res. 14: 1-10. DOI: 10.1111/j.1600-079X.1993.tb00478.x 10.1111/j.1600-079X.1993.tb00478.xSearch in Google Scholar

Maestroni G.J., Conti A. & Pierpaoli W. 1986. Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J. Neuroimmunol. 13 (1): 19-30. DOI: 10.1016/0165-5728(86)90047-010.1016/0165-5728(86)90047-0Search in Google Scholar

Moore C.B. & Siopes T.D. 2002. Melatonin can produce immunoenhancement in Japanese quail (Coturnix coturnix japonica) without prior immunosuppression. Gen. Comp. Endocrin. 129 (2): 122-126. DOI: 10.1016/S0016-6480(02)00 516-6Search in Google Scholar

Reppert S.M. 1997. Melatonin receptors: Molecular biology of a new family of G protein-coupled receptors. J. Biol. Rhythms 12 (6): 528-531. DOI: 10.1177/07487304970120060610.1177/074873049701200606Search in Google Scholar

Reppert S.M., Weaver D.R., Cassone V.M., Godson C. & Kolakowski L.F. Jr. 1995. Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15 (5): 1003-1015. DOI: 10.1016/0896-6273(95)90090-X 10.1016/0896-6273(95)90090-XSearch in Google Scholar

Singh S.S. & Haldar C. 2007. Peripheral melatonin modulates seasonal immunity and reproduction of Indian tropical male bird Perdicula asiatica. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146 (3): 446-450. DOI: 10.1016/j.cbpa.2006.12.02410.1016/j.cbpa.2006.12.024Search in Google Scholar PubMed

Skwarlo-Sonta K., Majewski P., Markowska M., Olap R. & Olazanska B. 2003. Bidirectional communication between the pineal gland and immune system. Can. J. Physiol. Pharmacol. 81 (4): 342-349. DOI: 10.1139/y03-02610.1139/y03-026Search in Google Scholar PubMed

Vishwas D.K., Mukherjee A. & Haldar C. 2013. Melatonin improves humoral and cell-mediated immune responses of male golden hamster following stress induced by dexamethasone. J. Neuroimmunol. 259 (1-2): 17-25. DOI: doi:10.1016/j.jneuroim.2013.03.002 10.1016/j.jneuroim.2013.03.002Search in Google Scholar PubMed

Received: 2015-6-6
Accepted: 2015-11-4
Published Online: 2015-12-12
Published in Print: 2015-11-1

© Institute of Molecular Biology, Slovak Academy of Sciences

Articles in the same Issue

  1. Hardpan in skeletal soils: Statistical approach to determine its depth in a cherry orchard plot
  2. Using dye tracer for visualizing roots impact on soil structure and soil porous system
  3. Alterations in soil aggregate stability of a tropical Ultisol as mediated by changes in land use
  4. A new method for estimating soil water repellency index
  5. Particle-size and organic matter effects on structure and water retention of soils
  6. Depth-dependent heterogeneity of water flow in sandy soil under grass
  7. Spatial variability of hydrophysical properties of fallow sandy soils
  8. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil
  9. Impact of crop residue retention and tillage on water infiltration into a water-repellent soil
  10. Night-time leaf wetting process and its effect on the morning humidity gradient as a driving force of transpirational water loss in a semi-arid cornfield
  11. Hoplophthiracarus species (Acari: Oribatida: Phthiracaridae) from China with descriptions of two new species
  12. A new species of Trhypochthoniellus (Acari: Oribatida: Trhypochthoniidae) from Chile, with remarks on diagnosis of the genus
  13. New species of oribatid mites (Acari: Oribatida) of the genera Austrachipteria (Achipteriidae), Cultroribula (Astegistidae) and Microlamellarea (Lamellareidae) from New Zealand
  14. The genus Apterogyna in Saudi Arabia, with description of a new species and a new record (Hymenoptera: Bradynobaenidae: Apterogyninae)
  15. The effects of tree age and tree species composition on bird species richness in a Central European montane forest
  16. Me11b receptor mediated action of melatonin in regulation of lung associated immune system (LAIS) of Perdicula asiatica: An in vitro study
  17. Importance of urban trees and buildings as daytime roosts for bats
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0177/html
Scroll to top button