Home Mathematics Lower bound on the translative covering density of octahedra
Article
Licensed
Unlicensed Requires Authentication

Lower bound on the translative covering density of octahedra

  • Yiming Li , Yanlu Lian EMAIL logo , Miao Fu and Yuqin Zhang
Published/Copyright: April 26, 2024
Become an author with De Gruyter Brill

Abstract

Based on Zong’s work [26] on translative packing densities of 3-dimensional convex bodies, we present a local method to estimate the density θt(C3) of the densest translative covering of an octahedron. As a consequence we prove that θt(C3) ≥ 1 + 6.6 × 10–8, which is the first non-trivial lower bound for this density.

MSC 2010: 52C17; 52B10; 52C07; 05C12

Funding statement: This work has been supported by the National Natural Science Foundation of China (NSFC12226006, NSFC11921001, NSFC11801410 and NSFC11971346), the Natural Key Research and Development Program of China (2018YFA0704701), the China Scholarship Council (No. 201906255029) and the Scientific Research Fund of Zhejiang Provincial Education Department (Y202250092), Y202351675) and the Natural Science Foundation of Zhejiang Provincial (LQ24A010008).

Acknowledgements

The authors are grateful to C. Zong for his supervision and discussion.

  1. Communicated by: M. Henk

References

[1] R. P. Bambah, On lattice coverings by spheres. Proc. Nat. Inst. Sci. India 20 (1954), 25–52. MR61137 Zbl 0059.16301Search in Google Scholar

[2] E. S. Barnes, The covering of space by spheres. Canadian J. Math. 8 (1956), 293–304. MR77576 Zbl 0072.0360310.4153/CJM-1956-033-4Search in Google Scholar

[3] U. Betke, M. Henk, Densest lattice packings of 3-polytopes. Comput. Geom. 16 (2000), 157–186. MR1765181 Zbl 1133.5230710.1016/S0925-7721(00)00007-9Search in Google Scholar

[4] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry. Springer 2005. MR2163782 Zbl 1086.52001Search in Google Scholar

[5] J. H. Conway, S. Torquato, Packing, tiling, and covering with tetrahedra. Proc. Natl. Acad. Sci. USA 103 (2006), 10612–10617. MR2242647 Zbl 1160.5230110.1073/pnas.0601389103Search in Google Scholar PubMed PubMed Central

[6] B. N. Delone, S. S. Ryškov, Solution of the problem on the least dense lattice covering of a 4-dimensional space by equal spheres (Russian). Dokl. Akad. Nauk SSSR 152 (1963), 523–524. English translation: Soviet Math. Dokl. 4 (1963), 1333–1334. MR175850 Zbl 0132.03204Search in Google Scholar

[7] R. Dougherty, V. Faber, The degree-diameter problem for several varieties of Cayley graphs. I. The abelian case. SIAM J. Discrete Math. 17 (2004), 478–519. MR2050686 Zbl 1056.0504610.1137/S0895480100372899Search in Google Scholar

[8] I. Fáry, Sur la densité des réseaux de domaines convexes. Bull. Soc. Math. France 78 (1950), 152–161. MR39288 Zbl 0039.1820210.24033/bsmf.1413Search in Google Scholar

[9] E. S. Fedorov, Elements of the study of figures (Russian). Zap. Mineral. Imper. S. Petersburgskogo Obs̆c̆. 21 (1885), 1–279.10.1038/scientificamerican11011885-21cbuildSearch in Google Scholar

[10] G. Fejes Tóth, W. Kuperberg, Packing and covering with convex sets. In: Handbook of convex geometry, Vol. A, B, 799–860, North-Holland 1993. MR1242997 Zbl 0789.5201810.1016/B978-0-444-89597-4.50007-XSearch in Google Scholar

[11] L. Few, Covering space by spheres. Mathematika 3 (1956), 136–139. MR83525 Zbl 0072.2730210.1112/S0025579300001819Search in Google Scholar

[12] C. M. Fiduccia, R. W. Forcade, J. S. Zito, Geometry and diameter bounds of directed Cayley graphs of abelian groups. SIAM J. Discrete Math. 11 (1998), 157–167. MR1612881 Zbl 0916.0503310.1137/S0895480195286456Search in Google Scholar

[13] R. Forcade, J. Lamoreaux, Lattice-simplex coverings and the 84-shape. SIAM J. Discrete Math. 13 (2000), 194–201. MR1760337 Zbl 0941.0502210.1137/S0895480198349622Search in Google Scholar

[14] M. Fu, F. Xue, C. Zong, Lower bounds on lattice covering densities of simplices. SIAM J. Discrete Math. 37 (2023), 1788–1804. MR4625894 Zbl 0773487010.1137/22M1514155Search in Google Scholar

[15] S. W. Golomb, L. R. Welch, Perfect codes in the Lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18 (1970), 302–317. MR256766 Zbl 0192.5630210.1137/0118025Search in Google Scholar

[16] J. Januszewski, Covering the plane with translates of a triangle. Discrete Comput. Geom. 43 (2010), 167–178. MR2575324 Zbl 1189.5201910.1007/s00454-009-9203-1Search in Google Scholar

[17] R. Kershner, The number of circles covering a set. Amer. J. Math. 61 (1939), 665–671. MR43 Zbl 0021.1140110.2307/2371320Search in Google Scholar

[18] J. C. Lagarias, C. Zong, Mysteries in packing regular tetrahedra. Notices Amer. Math. Soc. 59 (2012), 1540–1549. MR3027108 Zbl 1284.5201810.1090/noti918Search in Google Scholar

[19] Y. Li, M. Fu, Y. Zhang, Lower Bound on Translative Covering Density of Tetrahedra. Discrete Comput. Geom., to appear. https://doi.org/10.1007/s00454-023-00602-010.1007/s00454-023-00602-0Search in Google Scholar

[20] H. Minkowski, Dichteste gitterförmige Lagerung kongruenter Körper. Gött. Nachr. (1904), 311–355. Zbl 35.0508.02Search in Google Scholar

[21] O. Ordentlich, O. Regev, B. Weiss, New bounds on the density of lattice coverings. J. Amer. Math. Soc. 35 (2022), 295–308. MR4322394 Zbl 1480.1108610.1090/jams/984Search in Google Scholar

[22] C. A. Rogers, Packing and covering. Cambridge Univ. Press 1964. MR172183 Zbl 0176.51401Search in Google Scholar

[23] S. S. Ryškov, E. P. Baranovskiĭ, Solution of the problem of the least dense lattice covering of five-dimensional space by equal spheres (Russian). Dokl. Akad. Nauk SSSR 222 (1975), 39–42. English translation: Soviet Math. Dokl. 16 (1975), no. 3, 586–590. MR427238 Zbl 0326.10026Search in Google Scholar

[24] F. Xue, C. Zong, On lattice coverings by simplices. Adv. Geom. 18 (2018), 181–186. MR3785419 Zbl 1429.5202210.1515/advgeom-2017-0049Search in Google Scholar

[25] C. Zong, Sphere packings. Springer 1999. MR1707318 Zbl 0935.52016Search in Google Scholar

[26] C. Zong, On the translative packing densities of tetrahedra and cuboctahedra. Adv. Math. 260 (2014), 130–190. MR3209351 Zbl 1295.5202310.1016/j.aim.2014.04.009Search in Google Scholar

[27] C. Zong, Packing, covering and tiling in two-dimensional spaces. Expo. Math. 32 (2014), 297–364. MR3279483 Zbl 1307.5201210.1016/j.exmath.2013.12.002Search in Google Scholar

Received: 2023-04-21
Revised: 2023-07-11
Revised: 2023-09-04
Published Online: 2024-04-26
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2024-0006/html
Scroll to top button