Abstract
A Shioda–Inose structure is a geometric construction which associates to an Abelian surface a projective K3 surface in such a way that their transcendental lattices are isometric. This geometric construction was described by Morrison by considering special symplectic involutions on the K3 surfaces. After Morrison several authors provided explicit examples. The aim of this paper is to generalize Morrison’s results and some of the known examples to an analogous geometric construction involving not involutions, but order 3 automorphisms. Therefore, we define generalized Shioda–Inose structures of order 3, we identify the K3 surfaces and the Abelian surfaces which appear in these structures and we provide explicit examples.
Acknowledgements
The authors thank Bert van Geemen for many suggestions on the preliminary version of the paper and Benedetta Piroddi for useful remarks on the embeddings of some lattices. We also thank the anonymous referee.
Communicated by: I. Coskun
References
[1] W. P. Barth, On the classification of K3 surfaces with nine cusps. In: Complex analysis and algebraic geometry, 41–59, de Gruyter 2000. MR1760871 Zbl 1067.1450910.1515/9783110806090-003Suche in Google Scholar
[2] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces. Springer 2004. MR2030225 Zbl 1036.1401610.1007/978-3-642-57739-0Suche in Google Scholar
[3] J. Bertin, Réseaux de Kummer et surfaces K3. Invent. Math. 93 (1988), 267–284. MR948101 Zbl 0688.1403110.1007/BF01394333Suche in Google Scholar
[4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. MR1484478 Zbl 0898.6803910.1006/jsco.1996.0125Suche in Google Scholar
[5] Z. Çınkır, H. önsiper, On symplectic quotients of K3 surfaces. Indag. Math. (N.S.) 11 (2000), 533–538. MR1909817 Zbl 1026.1401110.1016/S0019-3577(00)80022-1Suche in Google Scholar
[6] A. Clingher, C. F. Doran, Modular invariants for lattice polarized K3 surfaces. Michigan Math. J. 55 (2007), 355–393. MR2369941 Zbl 1132.1403510.1307/mmj/1187646999Suche in Google Scholar
[7] H. S. M. Coxeter, J. A. Todd, An extreme duodenary form. Canad. J. Math. 5 (1953), 384–392. MR55381 Zbl 0052.0160210.4153/CJM-1953-043-4Suche in Google Scholar
[8] A. Fujiki, Finite automorphism groups of complex tori of dimension two. Publ. Res. Inst. Math. Sci. 24 (1988), 1–97. MR944867 Zbl 0654.3201510.2977/prims/1195175326Suche in Google Scholar
[9] F. Galluzzi, G. Lombardo, Correspondences between K3 surfaces. Michigan Math. J. 52 (2004), 267–277. MR2069800 Zbl 1067.1403210.1307/mmj/1091112075Suche in Google Scholar
[10] A. Garbagnati, Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms. Comm. Algebra 41 (2013), 583–616. MR3011784 Zbl 1266.1402910.1080/00927872.2011.621006Suche in Google Scholar
[11] A. Garbagnati, On K3 surface quotients of K3 or Abelian surfaces. Canad. J. Math. 69 (2017), 338–372. MR3612089 Zbl 1387.1410310.4153/CJM-2015-058-1Suche in Google Scholar
[12] A. Garbagnati, Y. P. Montañez, Order 3 symplectic automorphisms on K3 surfaces. Math. Z. 301 (2022), 225–253. MR4405649 Zbl 1493.1405810.1007/s00209-021-02901-9Suche in Google Scholar
[13] A. Garbagnati, A. Sarti, Symplectic automorphisms of prime order on K3 surfaces. J. Algebra 318 (2007), 323–350. MR2363136 Zbl 1129.1404910.1016/j.jalgebra.2007.04.017Suche in Google Scholar
[14] A. Garbagnati, A. Sarti, Elliptic fibrations and symplectic automorphisms on K3 surfaces. Comm. Algebra 37 (2009), 3601–3631. MR2561866 Zbl 1178.1404110.1080/00927870902828785Suche in Google Scholar
[15] H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 495–502, Kinokuniya Book Store, Tokyo 1978. MR578868 Zbl 0411.14009Suche in Google Scholar
[16] K. Koike, Elliptic K3 surfaces admitting a Shioda-Inose structure. Comment. Math. Univ. St. Pauli 61 (2012), 77–86. MR3012314 Zbl 1271.14051Suche in Google Scholar
[17] S. Kondō, Algebraic K3 surfaces with finite automorphism groups. Nagoya Math. J. 116 (1989), 1–15. MR1029967 Zbl 0667.1402010.1017/S0027763000001653Suche in Google Scholar
[18] R. Miranda, The basic theory of elliptic surfaces. Lecture notes, Università di Pisa, 1988. Edizioni ETS, Pisa 1989. MR728142 Zbl 0509.14034Suche in Google Scholar
[19] D. R. Morrison, On K3 surfaces with large Picard number. Invent. Math. 75 (1984), 105–121. MR728142 Zbl 0509.1403410.1007/BF01403093Suche in Google Scholar
[20] V. V. Nikulin, Kummer surfaces (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 278–293, 471. English translation: Math. USSR, Izvestija 9 (1975), 261–275. MR429917 Zbl 0325.1401510.1070/IM1975v009n02ABEH001477Suche in Google Scholar
[21] V. V. Nikulin, Finite groups of automorphisms of Kählerian K3 surfaces (Russian). Trudy Moskov. Mat. Obshch. 38 (1979), 75–137. English translation: Trans. Moscow Math. Soc. 1980, no. 2, 71–135. MR544937 Zbl 0454.14017Suche in Google Scholar
[22] V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111–177, 238. English translation: Math. USSR, Izvestija 14 (1979), 103–167 (1980). MR525944 Zbl 0408.10011 Zbl 0427.1001410.1070/IM1980v014n01ABEH001060Suche in Google Scholar
[23] K.-i. Nishiyama, The Jacobian fibrations on some K3 surfaces and their Mordell–Weil groups. Japan. J. Math. (N.S.) 22 (1996), 293–347. MR1432379 Zbl 0889.1401510.4099/math1924.22.293Suche in Google Scholar
[24] M. Schütt, Sandwich theorems for Shioda–Inose structures. Izv. Math. 77 (2013), 211–222. MR3087091 Zbl 1275.1403510.1070/IM2013v077n01ABEH002633Suche in Google Scholar
[25] I. Shimada, On elliptic K3 surfaces. Michigan Math. J. 47 (2000), 423–446. MR1813537 Zbl 1085.1450910.1307/mmj/1030132587Suche in Google Scholar
[26] I. Shimada, D.-Q. Zhang, Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces. Nagoya Math. J. 161 (2001), 23–54. MR1820211 Zbl 1064.1450310.1017/S002776300002211XSuche in Google Scholar
[27] T. Shioda, H. Inose, On singular K3 surfaces. In: Complex analysis and algebraic geometry, 119–136, Iwanami Shoten Publishers, Tokyo 1977. MR441982 Zbl 0374.1400610.1017/CBO9780511569197.010Suche in Google Scholar
[28] J. Top, Descent by 3-isogeny and 3-rank of quadratic fields. In: Advances in number theory (Kingston, ON, 1991), 303–317, Oxford Univ. Press 1993. MR1368429 Zbl 0804.1104010.1093/oso/9780198536680.003.0023Suche in Google Scholar
[29] B. van Geemen, A. Sarti, Nikulin involutions on K3 surfaces. Math. Z. 255 (2007), 731–753. MR2274533 Zbl 1141.1402210.1007/s00209-006-0047-6Suche in Google Scholar
[30] B. van Geemen, J. Top, An isogeny of K3 surfaces. Bull. London Math. Soc. 38 (2006), 209–223. MR2214473 Zbl 1086.1403210.1112/S0024609306018170Suche in Google Scholar
[31] E. B. Vinberg, The two most algebraic K3 surfaces. Math. Ann. 265 (1983), 1–21. MR719348 Zbl 0537.1402510.1007/BF01456933Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Inequalities for f*-vectors of lattice polytopes
- Lower bound on the translative covering density of octahedra
- Variations on the Weak Bounded Negativity Conjecture
- Poisson Structures on moduli spaces of Higgs bundles over stacky curves
- Generalized Shioda–Inose structures of order 3
- Deformation cones of Tesler polytopes
- Some observations on conformal symmetries of G2-structures
- Characterization of the sphere and of bodies of revolution by means of Larman points
- Fractional-linear integrals of geodesic flows on surfaces and Nakai’s geodesic 4-webs
- The feet of orthogonal Buekenhout–Metz unitals
Artikel in diesem Heft
- Frontmatter
- Inequalities for f*-vectors of lattice polytopes
- Lower bound on the translative covering density of octahedra
- Variations on the Weak Bounded Negativity Conjecture
- Poisson Structures on moduli spaces of Higgs bundles over stacky curves
- Generalized Shioda–Inose structures of order 3
- Deformation cones of Tesler polytopes
- Some observations on conformal symmetries of G2-structures
- Characterization of the sphere and of bodies of revolution by means of Larman points
- Fractional-linear integrals of geodesic flows on surfaces and Nakai’s geodesic 4-webs
- The feet of orthogonal Buekenhout–Metz unitals