Home Mathematics Deformation cones of Tesler polytopes
Article
Licensed
Unlicensed Requires Authentication

Deformation cones of Tesler polytopes

  • Yonggyu Lee and Fu Liu EMAIL logo
Published/Copyright: April 26, 2024
Become an author with De Gruyter Brill

Abstract

For a R0n , the Tesler polytope Tesn(a) is the set of upper triangular matrices with non-negative entries whose hook sum vector is a. We first give a different proof of the known fact that for every fixed a0 R>0n , all the Tesler polytopes Tesn(a) are deformations of Tesn(a0). We then calculate the deformation cone of Tesn(a0). In the process, we also show that any deformation of Tesn(a0) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tesn(a0).

MSC 2010: 52B20

Funding statement: The second author is partially supported by a grant from the Simons Foundation #426756 and an NSF grant #2153897-0.

Acknowledgements

We are grateful to the two anonymous referees for their valuable comments and suggestions. In particular, we thank one of the referees who brought to our attention the result stated in Theorem 3.9, which was not in a previous version of this article.

  1. Communicated by: M. Joswig

References

[1] D. Armstrong, A. Garsia, J. Haglund, B. Rhoades, B. Sagan, Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics. J. Comb. 3 (2012), 451–494. MR3029443 Zbl 1291.0520310.4310/JOC.2012.v3.n3.a7Search in Google Scholar

[2] W. Baldoni, M. Vergne, Kostant partitions functions and flow polytopes. Transform. Groups 13 (2008), 447–469. MR2452600 Zbl 1200.5200810.1007/s00031-008-9019-8Search in Google Scholar

[3] A. Barvinok, Integer points in polyhedra. European Mathematical Society, Zürich 2008. MR2455889 Zbl 1154.5200910.4171/052Search in Google Scholar

[4] C. Benedetti, R. S. González D'León, C. R. H. Hanusa, P. E. Harris, A. Khare, A. H. Morales, M. Yip, A combinatorial model for computing volumes of flow polytopes. Trans. Amer. Math. Soc. 372 (2019), 3369–3404. MR3988614 Zbl 1420.0501110.1090/tran/7743Search in Google Scholar

[5] E. R. Canfield, B. D. McKay, The asymptotic volume of the Birkhoff polytope. Online J. Anal. Comb. (2009) no. 4, 4 pages. MR2575172 Zbl 1193.15034Search in Google Scholar

[6] F. Castillo, F. Liu, Deformation cones of nested braid fans. Int. Math. Res. Not. IMRN (2022) no. 3, 1973–2026. MR4373230 Zbl 1486.5202310.1093/imrn/rnaa090Search in Google Scholar

[7] C. S. Chan, D. P. Robbins, D. S. Yuen, On the volume of a certain polytope. Experiment. Math. 9 (2000), 91–99. MR1758803 Zbl 0960.0500410.1080/10586458.2000.10504639Search in Google Scholar

[8] S. Corteel, J. S. Kim, K. Mészáros, Volumes of generalized Chan-Robbins-Yuen polytopes. Discrete Comput. Geom. 65 (2021), 510–530. MR4212976 Zbl 1462.5201010.1007/s00454-019-00066-1Search in Google Scholar

[9] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, volume 124 of Graduate Studies in Mathematics. Amer. Math. Soc. 2011. MR2810322 Zbl 1223.1400110.1090/gsm/124Search in Google Scholar

[10] J. A. De Loera, F. Liu, R. Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope. J. Algebraic Combin. 30 (2009), 113–139. MR2519852 Zbl 1187.0500910.1007/s10801-008-0155-ySearch in Google Scholar

[11] J. Edmonds, Submodular functions, matroids, and certain polyhedra. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), 69–87, Gordon and Breach, New York-London-Paris 1970. MR270945 Zbl 0268.05019Search in Google Scholar

[12] A. M. Garsia, J. Haglund, G. Xin, Constant term methods in the theory of Tesler matrices and Macdonald polynomial operators. Ann. Comb. 18 (2014), 83–109. MR3167606 Zbl 1297.0524010.1007/s00026-013-0213-6Search in Google Scholar

[13] E. Gorsky, A. Neguţ , Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. (9) 104 (2015), 403–435. MR3383172 Zbl 1349.1401210.1016/j.matpur.2015.03.003Search in Google Scholar

[14] J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants. Adv. Math. 227 (2011), 2092–2106. MR2803796 Zbl 1258.1302010.1016/j.aim.2011.04.013Search in Google Scholar

[15] J. Haglund, J. B. Remmel, A. T. Wilson, The delta conjecture. Trans. Amer. Math. Soc. 370 (2018), 4029–4057. MR3811519 Zbl 1383.0530810.1090/tran/7096Search in Google Scholar

[16] Y. Lee, F. Liu, Ehrhart positivity of Tesler polytopes and Berline-Vergne’s valuation. Discrete Comput. Geom. 69 (2023), 896–918. MR4555874 Zbl 1509.5201210.1007/s00454-022-00453-1Search in Google Scholar

[17] P. McMullen, Representations of polytopes and polyhedral sets. Geom. Dedicata 2 (1973), 83–99. MR326574 Zbl 0273.5200610.1007/BF00149284Search in Google Scholar

[18] K. Mészáros, A. H. Morales, B. Rhoades, The polytope of Tesler matrices. Selecta Math. (N.S.) 23 (2017), 425–454. MR3595898 Zbl 1355.0527110.1007/s00029-016-0241-2Search in Google Scholar

[19] A. H. Morales, Ehrhart polynomials of examples of flow polytopes. MR4474824 Zbl 1498.52018Search in Google Scholar

[20] A. Padrol, V. Pilaud, G. Poullot, Deformation cones of graph associahedra and nestohedra. European J. Combin. 107 (2023), Paper No. 103594, 27 pages. MR4474824 Zbl 1498.5201810.1016/j.ejc.2022.103594Search in Google Scholar

[21] I. Pak, Four questions on Birkhoff polytope. Ann. Comb. 4 (2000), 83–90. MR1763951 Zbl 0974.5201010.1007/PL00001277Search in Google Scholar

[22] A. Postnikov, Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN (2009) no. 6, 1026–1106. MR2487491 Zbl 1162.5200710.1093/imrn/rnn153Search in Google Scholar

[23] A. Postnikov, V. Reiner, L. Williams, Faces of generalized permutohedra. Doc. Math. 13 (2008), 207–273. MR2520477 Zbl 1167.0500510.4171/dm/248Search in Google Scholar

[24] A. T. Wilson, A weighted sum over generalized Tesler matrices. J. Algebraic Combin. 45 (2017), 825–855. MR3627505 Zbl 1362.0513510.1007/s10801-016-0726-2Search in Google Scholar

[25] D. Zeilberger, Proof of a conjecture of Chan, Robbins, and Yuen. Elektron. Trans. Numer. Anal. 9 (1999), 147–148. MR1749805 Zbl 0941.05006Search in Google Scholar

[26] G. M. Ziegler, Lectures on polytopes. Springer 1995. MR1311028 Zbl 0823.5200210.1007/978-1-4613-8431-1Search in Google Scholar

Received: 2023-01-02
Revised: 2023-11-11
Published Online: 2024-04-26
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2024-0003/html
Scroll to top button