The singular values σ > 1 of an n × n involutory matrix A appear in pairs (σ, 1σ{1 \over \sigma }). Their left and right singular vectors are closely connected. The case of singular values σ = 1 is discussed in detail. These singular values may appear in pairs (1,1) with closely connected left and right singular vectors or by themselves. The link between the left and right singular vectors is used to reformulate the singular value decomposition (SVD) of an involutory matrix as an eigendecomposition. This displays an interesting relation between the singular values of an involutory matrix and its eigenvalues. Similar observations hold for the SVD, the singular values and the coneigenvalues of (skew-)coninvolutory matrices.
Inhalt
-
Open AccessOn the singular value decomposition of (skew-)involutory and (skew-)coninvolutory matrices2. Januar 2020
-
21. Januar 2020
-
21. Januar 2020
-
Open AccessSome Characterizations of the Distribution of the Condition Number of a Complex Gaussian Matrix21. Januar 2020
-
21. Januar 2020
-
17. Februar 2020
-
17. Februar 2020
-
5. März 2020
-
3. April 2020
-
Open AccessOn the spectrum of noisy blown-up matrices13. April 2020
-
Open AccessA note on Eulerian numbers and Toeplitz matrices20. Mai 2020
-
Open AccessNon-unitary CMV-decomposition4. Juli 2020
-
12. Juni 2020
-
22. Juli 2020
-
13. Juli 2020
-
Open AccessM-matrix and inverse M-matrix extensions26. September 2020
-
18. November 2020
-
6. Dezember 2020
-
28. November 2020
-
14. Dezember 2020