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Abstract:We assume that every element of a matrix has a small, individual error, andmodel it by an external
number, which is the sum of a nonstandard real number and a neutrix, the latter being a convex (external)
additive group. The algebraic properties of external numbers formalize common error analysis, with rules for
calculation which are a sort of mellowed form of the axioms for real numbers.
We model the propagation of errors in matrix calculus by the calculus of matrices with external numbers,
and study its algebraic properties. Many classical properties continue to hold, sometimes stated in terms of
inclusion instead of equality. There are notable exceptions, for which we give counterexamples and investi-
gate suitable adaptations. In particular we study addition andmultiplication of matrices, determinants, near
inverses, and generalized notions of linear independence and rank.
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1 Introduction
In this article imprecisions in entries of matrices are modelled by (scalar) neutrices, which are convex sub-
groups of the set of nonstandard real numbers, most of them are external sets. They are a sort of generalized
zeros. Each entry of a matrix is an external number, which is the pointwise (Minkowski) sum of a (nonstan-
dard) real number and a neutrix. Every entry has its own individual neutrix, modelling the diversity of im-
precisions. The intrinsic vagueness is respected by the Sorites property of neutrices, which are invariant by
some shifts. Examples of neutrices are the external set of in�nitesimals � and the external set £ of numbers
smaller in absolute value than some standard real number, as well as all multiples of them, but there exist
other types of neutrices [25]. The term neutrix is borrowed from Van der Corput, and we were inspired by his
Ars Negligendi [5].

Within the setting of external numbers we study the e�ects of error propagation in calculations with
matrices and determinants.

The calculus of external numbers originates from error analysis, which is more or less informal. "Provi-
sional" rules for addition, subtraction,multiplication anddivision are for instance given in [35], and they lead
only to aweak algebraic structure. In the context of external numbers these rules are formalized asMinkowski
operations. The fact that neutrices are convex additive groups enables us to build a much stronger algebraic
structure, called Complete Arithmetical Solid in [11]. Addition and multiplication satisfy the properties of a
completely regular commutative semigroup [32], and adapted forms of distributivity, order relation, Dedekind
completeness and the Archimedean property are shown to hold.
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We cannot hope that such strong rules hold for matrix calculus, still the matrices form a regular commu-
tative semigroup for addition: the usual laws for addition are valid, but the sum of a matrix and its additive
"inverse" will be amatrix of neutrices, and not the zero-matrix. Also inmany cases the common laws for mul-
tiplication of matrices hold. Problems may appear when multiplying matrices with entries of di�erent sign,
in particular when some entries are almost equal in absolute value but opposite, or when the matrix has
a small determinant. Still many algebraic properties hold under quite general conditions, typically entries
should not be nearly opposite, a notion de�ned in Section 2. Sometimes algebraic properties hold in the form
of inclusions instead of equalities.

We pay special attention to invertibility, linear dependence and independence, and rank.
In analogy to addition, generically we cannot hope that the product of two matrices yields the identity

matrix. We speak of a near inverse if we obtain the identity matrix up to neutrices included in �. We give
conditions for near inverses to exist, in terms of not too small determinants.

We give a straightforward de�nition for linear independence of vectors of external numbers, and relate
it to classical linear independence and dependence of vectors of representatives, i.e. real numbers which are
elements of the external numbers.

There are several notions of rank of amatrix of external numbers. The row rank s is de�ned in the common
way, using linear independence. Theminor rank is de�nedusing thenon-singularity ofminors. In fact amixed
notion called strict rank happens to be the more operational. We give conditions for its existence, and show
that then the row rank is equal to the minor rank.

This article has the following structure. In Section 2 we present some properties of neutrices and external
numbers, which are needed for the remaining sections. Some results are recalled, some are new. In Section
3 we show that almost all common properties of operations on matrices hold for non-negative matrices, and
give general conditions for these properties to hold beyond. Section 4 deals with the determinant and its mi-
nors. In Section 5we study nearly invertiblematrices. In Section 6we extend the notions of linear dependence
and independence to external vectors. Section 7 discusses several notions of rank and their relationships. In
Section 8 we relate brie�y our approach to other forms of dealing with imprecisions and errors.

2 Neutrices and external numbers
We recall the de�nitions of neutrices and external numbers, and some basic properties as regards to algebraic
rules and the order relation. We derive some new properties which are useful to matrix calculus. For more
details on neutrices and external numbers we refer to [2, 10–12, 25].

Remark 2.1. Throughout this article we use the symbol⊆ for inclusion and⊂ for strict inclusion.

Neutrices and external numbers are well-de�ned external sets in the axiomatic system HST for nonstandard
analysis as given by Kanovei and Reeken in [24]. This is an extension of a bounded form of Nelson’s Internal
Set Theory IST [29]. This theory extends common set theory ZFC by adding anunde�nedpredicate "standard"
to the language of set theory, and three newAxiom schemes. Introductions to IST are contained in e.g. [9], [8]
or [26]. An important feature is that in�nite sets always have nonstandard elements. In particular nonstan-
dard numbers are already present within R. Limited numbers are real numbers bounded in absolute value
by standard natural numbers. Real numbers larger in absolute value than limited numbers are called unlim-
ited. Its reciprocals, together with 0, are called in�nitesimal. Limited numbers which are not in�nitesimal are
called appreciable.

A (scalar) neutrix is an additive convex subgroup of R. Except for {0} and R, all neutrices are external
sets. The set of all limited numbers £ and the set of all in�nitesimals� are neutrices. Note that £ and� are not
sets in the sense of ZFC, for they are bounded subsets ofRwith no lowest upper bound. Let ε ∈ Rbe a positive
in�nitesimal. Some other neutrices are ε�, ε£,

⋂
st(n)∈N

[−εn , εn] =£ε∞̸,
⋃

st(n)∈N

[−e−1/(nε), e−1/(nε)] =£e−@/ε; here
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@ denotes the external set of positive appreciable numbers and ∞̸ the external set of positive unlimited
numbers. For every neutrix N it holds that £N = N.

An external number is the Minkowski-sum of a real number and a neutrix. So each external number has
the form α = a + A = {a + x|x ∈ A}, where A is called the neutrix part of α, denoted by N(α), and a ∈ R is
called a representative of α. If N(α) = {0}, we may identify {a} and a, so that the real numbers are external
numbers. If 0 ∈ ̸ α = a + N(α), we call α zeroless and then

α ∩ �α = ∅. (1)

Sometimes we call α neutricial if α = N(α).
The collection of all neutrices is not an external set, but a de�nable class, denoted byN. Also the external

numbers form a class, denoted by E.
Addition, subtraction, multiplication and division are given by the Minkowski operations of De�nition

2.2 below.

De�nition 2.2. Let α = a + A, β = b + B be two external numbers and A, B be two neutrices.

1. α ± β = a ± b + A + B = a + b + max{A, B}.
2. αβ = ab + Ab + Ba + AB = ab + max{aB, bA, AB}.
3. If α is zeroless, 1α = 1

a + A
a2 .

Neutrices are ordered by inclusion, and the maximums are taken in this sense. If α or β are zeroless, in De�-
nition 2.2.2 we may neglect the neutrix product AB.

The rules of De�nition 2.2 re�ect the common rules for the propagation of errors of error analysis. In [35]
they are called "provisional rules", for this analysis is informal, to hold approximately and somewhat ad hoc,
using common sense. In contrast, in terms of external numbers, the equalities of De�nition 2.2 are part of
formal mathematics and permit us to prove much more general laws, which lead to the notion of Complete
Arithmetical Solid in [11]. This structure is a completely regular commutative semigroup [32] for addition and
multiplication, and distributivity, the order relation, Dedekind completeness and the Archimedean property
hold in modi�ed forms.

We consider here only some properties which are useful for the remainder of this article. We recall some
properties of neutrices and the order relation, and give some special attention to distributivity, which is of
importance for the matrix calculus.

De�nition 2.3. Let N be a neutrix and α be an external number. The external number α is called an absorber
of N if αN ⊂ N, and an exploder of N if N ⊂ αN .

We have tA = A for all |t| ∈ @, so appreciables are neither absorbers nor exploders of a neutrix A. In�nitesi-
mals are absorbers of £ and�, and unlimited numbers are exploders of these neutrices. Observe that if ε ∈ R
is a positive in�nitesimal, it is not an absorber of £ε∞̸, nor of £e−@/ε, and its reciprocal 1/ε is not an exploder
for these neutrices.

De�nition 2.2.3 does not permit to divide by neutrices. However we will use the common notation for
division of groups.

De�nition 2.4. Let A, B ∈ N. Then we de�ne

A : B = {c ∈ R | cB ⊆ A}.

An order relation for all external numbers α, β is given by

α ≤ β ≡ ∀a ∈ α∃b ∈ β(a ≤ b).

If α ∩ β = ∅ and α ≤ β, then ∀a ∈ α∀b ∈ β(a < b) and we write α < β. Note that � �£, while �∩£≠ ∅, so
� ≮£. An external number α is called positive if 0 < α and negative if α < 0. The number α is non-negative if
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0 ≤ α, i.e. if there exists x ∈ α such that 0 ≤ x and non-positive if 0 ≥ α; this means that there exists x ∈ α
with 0 ≥ x. Note that a neutrix is both non-negative and non-positive. The class of all non-negative external
numbers will be denoted by E+. The order relation is shown to be compatible with the operations, with some
small adaptations [12, 25].

De�nition 2.5. Let α = a + A be an external number. The absolute value of α is de�ned by |α| = |a| + A.

Notice that this de�nition does not depend on the choice of the representative of α.
In the �nal part of this section we consider the modi�ed distributivity law. It takes the following form.

Theorem 2.6. [10](Distributivity with correction term) Let α, β, γ = c + C be external numbers. Then

αγ + βγ = (α + β)γ + Cα + Cβ. (2)

Because a neutrix term is added in the right-hand side of (2), we always have the following form of subdis-
tributivity.

Corollary 2.7. (Subdistributivity) Let α, β, γ be external numbers. Then (α + β)γ ⊆ αγ + βγ.

Full distributivity holds under some conditions, see Theorem 2.10 below. The conditions are formulated with
the help of the notions of relative uncertainty and oppositeness. De�nition 2.8 is from [10], which contains
illustrative examples.

De�nition 2.8. Let α = a + A and β = b + B be external numbers and C be a neutrix.

1. The relative uncertainty R(α) of α is de�ned by A/α if α is zeroless, otherwise R(α) = R.
2. α and β are opposite with respect to C if (α + β)C ⊂ max(αC, βC).

In De�nition 2.8.2 the external number (α+ β)/(max(|α|, |β|) must be so small to be an absorber of C, so α and
β should indeed wipe each other almost out.

Proposition 2.9. [10, 25] Let α = a + A be zeroless. Then:

1. αN = aN and N/α = N/a.
2. R(α) = A/a ⊆ �.
3. R(1/α) = R(α).
4. α = α(1 + R(α)) = a(1 + R(α)).

We now are able to formulate the criteria for distributivity.

Theorem 2.10. [10] Let α, β, γ = c + C be external numbers. Then αγ + βγ = (α + β)γ if and only if R(γ) ⊆
max(R(α), R(β)), or α and β are not opposite with respect to C.

Obviously distributivity holds if α and β are of the same sign, say if we are always working with positive
numbers or non-negative numbers.

We end this section with three propositions on relative precision and distributivity, which are useful in
the study of matrices with external numbers.

Proposition 2.11. Let n ∈ N be standard and α1, . . . , αn be external numbers. Let λ = α1 · · · αn. Then R(λ) =
n∑
i=1

R(αi) = max
1≤i≤n

R(αi).
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Proof. For 1 ≤ i ≤ n, let αi = ai + Ai . Obviously
n∑
i=1

R(αi) = max
1≤i≤n

R(αi). If max
1≤i≤n

R(αi) = R, there exists i0 ∈

{1, . . . , n} such that αi0 is a neutrix. It follows that λ is a neutrix. Hence R(λ) = R = max
1≤i≤n

R(αi). Otherwise, let
2 ≤ p ≤ n, i1, . . . , ip ∈ {1, . . . , n} and J = {1, . . . , n} \ {i1, . . . , ip}. Then

λ =a1 . . . an +
n∑
p=1

∑
1≤i1<···<ip≤n

(
Ai1 . . . AipΠj∈Jaj

)
=a1 . . . an + A1a2 . . . an + · · · + Ana1 . . . an−1

+
n∑
p=2

∑
1≤i1<···<ip≤n

(
Ai1 . . . AipΠj∈Jaj

)
.

Put
µp = a1 · · · an +

∑
1≤i1<···<ip≤n

(
Ai1 . . . AipΠj∈Jaj

)
.

Then

R(λ) =
n∑
i=1

R(αi) +
n∑
p=2

R(µp) = max
1≤i≤n

R(αi) +
n∑
p=2

R(µp).

By Proposition 2.9.2 we have R(αi) ⊆ � for 1 ≤ i ≤ n. This implies that R(αi1 ) · · · R(αip ) ≤ max
1≤i≤n

R(αi). As a result
R(µp) ≤ max

1≤i≤n
R(αi).

So
n∑
p=2

R(µp) ≤
n∑
p=2

max
1≤i≤n

R(αi) = max
1≤i≤n

R(αi). Hence R(λ) = max
1≤i≤n

R(αi) =
n∑
i=1

R(αi).

It follows from Proposition 2.11 that whenever α, β ∈ E, it holds that R(αβ) = R(α) + R(β) = max(R(α), R(β)),
and in case β is zeroless, by Proposition 2.9.3 also R( αβ ) = R(α) + R(

1
β ) = R(α) + R(β) = max(R(α), R(β)).

Proposition 2.12. Let n ∈ N be standard, α, β1, . . . , βn be external numbers. If R(α) ≤ min
1≤i≤n

R(βi), then α(β1 +
· · · + βn) = αβ1 + · · · + αβn.

Proof. For n = 2 the equality holds by Theorem 2.10. Wewill apply external induction. Let k be standard, and
suppose the equality holds for n = k. Let β = β1 + · · · + βk. Then α(β1 + · · · + βk+1) = α(β + βk+1) = αβ + αβk+1 =
αβ1 + · · · + αβk + αβk+1. By external induction we conclude that the equality holds for every standard natural
number n.

By Theorem 2.10 distributivity certainly holds with respect to external numbers of the same sign, but we may
weaken this to nearly opposite numbers, as given by the next de�nition.

De�nition 2.13. Two zeroless elements α, β ∈ E are nearly opposite if α/β ⊆ −1 +�.

For example, a real number b ' 1 and −1 are nearly opposite, but they are not opposite with respect to 0. If
a and b are two standard real numbers such that b ≠ −a, they are not nearly opposite.

Proposition 2.14. Let α, β, γ ∈ E be such that α and β are not nearly opposite. Then (α + β)γ = αγ + βγ.

Proof. Let γ = c+C. The distributive lawholds if α or β is neutricial. In case both are zeroless, wemay suppose
that |α| ≤ |β|. Then with β = b + B we have

∣∣ α
b
∣∣ ≤ 1 + �. Also α and b are not nearly opposite, so 1 + α

b ⊂ @,
hence by Proposition 2.9.2 also 1 + R(β) + α

b is a subset of @. Then 1 + R(β) + α
b is neither an absorber, nor an

exploder of C. Then by Theorem 2.10 and Proposition 2.9.1.

(α + β)C = b(1 + R(β) + αb )C = bC = βC = max(αC, βC) = αC + βC.
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Hence by Theorem 2.10 and Theorem 2.6

(α + β)γ = (α + β)(c + C) = (α + β)c + (α + β)C
=(α + β)c + (α + β)C + (α + β)C = (α + β)γ + αC + βC = αβ + αγ.

.

3 Matrices with external numbers
In this section operations on matrices with external numbers are studied. We start with addition, and show
that it satis�es the rules of a regular commutative semigroup. Thenwe study scalar multiplication andmatrix
multiplication. In many cases, in particular if the elements of the matrices are of the same sign, the same
laws hold as for real matrices. External numbers satisfy the subdistributivity property, and the same is true
for scalar multiplication and matrix multiplication. We present conditions for the distributivity property to
hold. In contrast to the multiplication of external numbers, the associative property does not hold for scalar
multiplication andmatrixmultiplication.Weprovide conditions so that the subassociativity property is valid,
and conditions so that the associativity property is valid.

We will consider matrices of the form

A =


α11 α12 · · · α1n
...

...
. . .

...
αm1 αm2 · · · αmn

 ,

where m, n ∈ N and αij ∈ E for 1 ≤ i ≤ m, 1 ≤ j ≤ n; the natural numbers m, n are always supposed to be
standard.We use the commonnotationA = (αij)m×n. The transpose of thematrixA is de�ned byAT = (νij)n×m
with νij = αji for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

De�nition 3.1. Let m, n ∈ N. As usual, we denote the zero-matrix by O, and if m = n, we denote the m × m
identity matrix by Im. A matrix O = (αij)m×n is called neutricial if all elements of O are neutrices, and zeroless
if all of its entries are zeroless. If αij = aij + Aij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, the matrix (aij)m×n is called amatrix
of representatives and N(A) := (Aij)m×n the associated neutricial matrix. We denote byMm,n(E) the class of all
m × n matrices over E. When m = n we simply write Mn(E). For A,B ∈ Mm×n(E) we write A ⊆ B if αij ⊆ βij
for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

De�nition 3.2. For matricesA = (αij)m×n ≡ (aij + Aij)m×n ∈Mm,n(E) we de�ne

A = max
1≤i≤m
1≤j≤n

Aij , A = min
1≤i≤m
1≤j≤n

Aij , |α| = max
1≤i≤m
1≤j≤n

∣∣αij∣∣ , |α| = min
1≤i≤m
1≤j≤n

|αij|.

Operations onMm,n(E) are de�ned similarly as in classical linear algebra.

De�nition 3.3. Let m, n, p ∈ N. LetA = (αij)m×n ∈Mm,n(E),B = (βij)m×n ∈Mm,n(E), C = (γij)n×p ∈Mn,p(E)
and λ ∈ E. Then

A +B = (αij + βij)m×n

λA = (λαij)m×n

AC = (µij)m×p

with µij =
n∑
k=1

αikγkj for 1 ≤ i ≤ m, 1 ≤ j ≤ p.
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The additive structure of Mm,n(E) re�ects the additive structure of E, which is a commutative regular semi-
group, and also amonoid, meaning that every element α = a+A has the individual neutral element A = α−α
[10], but there exists also a universal neutral element in the form of 0.

Proposition 3.4. The structureMm,n(E) is a commutative regular semigroup for addition. In fact, letA,B, C ∈
Mm,n(E). Then

1. A + (B + C) = (A +B) + C.
2. A +B = B +A.
3. A + O = A if and only if Oij ⊆ (N(A))ij for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
4. A + (−A) = N(A).

The structureMm,n(E) is also a monoid, with neutral element O.

Proof. The associative law and commutative law for addition hold for external numbers, hence also for ma-
trices. This makes Mm,n(E) a commutative semigroup for addition. As for Parts 3 and 4, let A ∈ Mm,n(E).
ThenA + N(A) = A, andA + (−A) = N(A). HenceA + (−A +A) = A, so the commutative semigroupMm,n(E)
is regular. If also O ∈Mm,n(E) is neutricial andA + O = A, then N(A) + O = N(A).

Clearly A + O = O + A = A for all A ∈ Mm,n(E). Hence the matrix O acts as a neutral element, which
makesMm,n(E) a monoid.

Because in Part 3 of Proposition 3.4 it holds that Oij ⊆ N(A)ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, the matrix N(A) is in
a sense a maximal individualized neutral element. If A has an element α which is not real, then N(A) has a
non-zero element. So, except for matrices with real elements we do not haveA + (−A) = O.

In the remaining part of this section we study multiplication and its interaction with addition. We will
see that most of the usual properties hold for non-negative matrices and non-negative scalars, and outside
these classes they still hold under quite general conditions.

For any external number α one has 0.α = 0 and 1.α = α; also the multiplication of external numbers is
associative. With these properties, the proofs of the next propositions are straightforward.

Proposition 3.5. LetA ∈Mm,n(E). Then

1. 0A = O.
2. 1A = A.
3. α(βA) = (αβ)A.

Proposition 3.6. LetA ∈Mm,p(E),B ∈Mp,q(E). Then

1. ImA = A = AIp.
2. (AB)T = BTAT .

It follows from the fact that the multiplication of external numbers is not distributive that scalar multiplica-
tion and the multiplication of matrices is not distributive over addition. Theorem 3.8 below presents condi-
tions such that the distributive property does hold.

De�nition 3.7. Let A = (αij)m×n ,B = (βij)m×n ∈ Mm,n(E). The matrices A and B are said to be not nearly
opposite if αij and βij are not nearly opposite for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note that matrices with entries of the same sign, and in particular non-negative matrices are not nearly op-
posite.

Theorem 3.8. LetA = (αij)m×n ∈Mm,n(E), andB = (βij)n×p , C = (γij)n×p ∈Mn,p(E). Let α, β ∈ E.
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1. If either R(α) ≤ min
1≤i≤m
1≤j≤n

max
{
R(βij), R(γij)

}
orB, C are not nearly opposite, then

α(B + C) = αB + αC.

2. If either max
1≤i≤m
1≤j≤n

{
R(αij)

}
≤ max{R(α), R(β)} or α, β are not nearly opposite, then (α + β)A = αA + βA.

3. If either max
1≤i≤m
1≤j≤n

R(αij) ≤ min
1≤i≤m
1≤j≤n

max{R(βij), R(γij)} orB, C are not nearly opposite, thenA(B + C) = AB +AC.

Proof. Part 1 and Part 2 follow directly from Theorem 2.10. As for Part 3, letA(B+C) = (µij)m×n,AB = (λij)m×p
and AC = (νij)m×p. It follows from Theorem 2.10 in case max

1≤i≤m
1≤j≤n

R(αij) ≤ min
1≤i≤m
1≤j≤n

max{R(βij), R(γij)}, and from

Proposition 2.14 in case B, C are not nearly opposite, that αij(βrs + γrs) = αijβrs + αijγrs whenever 1 ≤ i ≤
m, 1 ≤ j, r ≤ n, 1 ≤ s ≤ p. As a result,

µij =αi1(β1j + γ1j) + · · · + αin(βnj + γnj)
=
(
αi1β1j + · · · + αinβnj

)
+
(
αi1γ1j + · · · + αinγnj

)
=λij + νij .

The next corollary gives conditions for distributivity in the case of zeroless matrices, in terms of minimal or
maximal relative uncertainty.

Corollary 3.9. Let A = (αij)m×n ∈ Mm,n(E),B = (βij)n×p , C = (γij)n×p ∈ Mn,p(E) be zeroless matrices. Let
α, β ∈ E.

1. If R(α) ≤ max{B/β, C/γ)}, then α(B + C) = αB + αC.
2. If A/α ≤ max{R(α), R(β)}, then (α + β)A = αA + βA.
3. If A/α ≤ max{B/β, C/γ)}, thenA(B + C) = AB +AC.

Proof. 1. For all 1 ≤ i ≤ n, 1 ≤ j ≤ p it holds that

max{B/β, C/γ)} ≤ max{R(βij), R(γij)}. (3)

Then the result follows from Part 1 of Theorem 3.8.
2. The result follows from the fact that max

1≤i≤m
1≤j≤n

R(αij) ≤ A/α and from Part 2 of Theorem 3.8.

3. As in the proof of Part 1, formula (3) holds for all 1 ≤ i ≤ n, 1 ≤ j ≤ p. Then the distributivity property is
a consequence of Part 2 and Part 3 of Theorem 3.8.

The subdistributivity property for external numbers implies the following general properties of subdistribu-
tivity for scalar multiplication and multiplication of matrices. The proofs are immediate.

Proposition 3.10. Let A = (αij)m×n ,B = (βij)m×n ∈ Mm,n(E), C = (γij)n×p ,D = (νij)n×p ∈ Mn,p(E). Let
α, β ∈ E. Then

1. α(A +B) ⊆ αA + αB.
2. (α + β)A ⊆ αA + βA.
3. A(C +D) ⊆ AC +AD.
4. (A +B)C ⊆ AC +BC.

The fact that the distributivity law is not valid in general implies that the multiplication of matrices is not
associative. The following example is taken from [22, p.35].
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Example 3.11. LetA =
(
1 1
0 0

)
,B =

(
1 0
−1 0

)
, C =

(
�
�

)
. One has

(AB)C =
((

1 1
0 0

)(
1 0
−1 0

))(
�
�

)
=
(
0
0

)

and

A(BC) =
(
1 1
0 0

)((
1 0
−1 0

)(
�
�

))
=
(
1 1
0 0

)(
�
�

)
=
(
�
0

)
.

So (AB)C ≠ A(BC).

However, the subdistributivity of multiplication of external numbers, as shown in Corollary 2.7, implies the
following properties of inclusion.

Proposition 3.12. LetA = (αij)m×n ∈Mm,n(E),B = (βij)n×p ∈Mn,p(E) and C = (γij)p×q ∈Mp,q(E). Then

1. (AB)C ⊆ A(BC) ifA is a real matrix orB, C are both non-negative.
2. A(BC) ⊆ (AB)C if C is a real matrix orA,B are both non-negative.

Proof. LetAB ≡ D ≡ (δij)m×p,BC ≡ E ≡ (εij)n×q, (AB)C ≡ (ηij)m×q andA(BC) ≡ (θij)m×q.
1. We have by subdistributivity for all 1 ≤ i ≤ m, 1 ≤ k ≤ q

ηik =
p∑
j=1

δijγjk =
p∑
j=1

( n∑
r=1

αirβrj

)
γjk ⊆

p∑
j=1

n∑
r=1

αirβrjγjk .

IfA is a real matrix, or else by non-negativity ofBC, the last sum is equal to

n∑
r=1

αir

 p∑
j=1

βrjγjk

 = θik .

2. The proof is similar to the proof of Part 1.

We below provide conditions for the associative law for the multiplication of matrices to be valid.

Theorem 3.13. Let A = (αij)m×n ∈ Mm,n(E),B = (βij)n×p ∈ Mn,p(E) and C = (γij)p×q ∈ Mp,q(E). Assume for
every i, j we have the left-hand side and right-hand side distributivity properties

n∑
k=1

αik
p∑
r=1

βkrγrj =
n∑
k=1

p∑
r=1

αik(βkrγrj), (4)

p∑
r=1

n∑
k=1

(αikβkr)γrj =
p∑
r=1

( n∑
k=1

αikβkr

)
γrj . (5)

ThenA(BC) = (AB)C.

Proof. By (4) we have A(BC) =
n∑
k=1

p∑
r=1

αik(βkrγrj), and by (5) we have (AB)C =
p∑
r=1

n∑
k=1

(αikβkr)γrj. Then the

associativity property of the product of external numbers implies thatA(BC) = (AB)C.

Corollary 3.14. Let A = (αij)m×n ∈ Mm,n(E),B = (βij)n×p ∈ Mn,p(E) and C = (γij)p×q ∈ Mp,q(E). Then
A(BC) = (AB)C if either of the following conditions are satis�ed:
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1. A and C are both real matrices.
2. B is a neutricial matrix.
3. A,B, C are all non-negative matrices.

Proof. In caseA and C are both real matrices, the left-hand side and right-hand side distributivity properties
(4) and (5) hold by Proposition 2.12, because real numbers are precise. In case B is a neutricial matrix they
hold because BC and AB are neutricial. The properties (4) and (5) also hold if A,B, C are all non-negative
matrices, because distributivity always holds when external numbers have the same sign. Then the result
follows from Theorem 3.13.

Obviously, the above associative property continues to hold if the entries of each matrix all have the same
sign.

The conditions of Corollary 3.14 are in a sense minimal conditions for associativity. They guarantee that
the distributive properties of (4) and (5) hold term-by-term, but this is not necessary. To illustrate this, con-

sider formula (4). For 1 ≤ k ≤ n, put sk = αik
p∑
r=1

βkrγrj, tk =
p∑
r=1

αik(βkrγrj), Sk = N(sk) and Tk = N(tk). Assume

that 1 ≤ k1 ≠ k2 ≤ n and Sk1 ⊂ Tk1 ⊂ Sk2 = Tk2 , i.e. distributivity holds for a term of the sum with bigger
neutrix than the neutrix of another term for which proper subdistributivity may holds. Then the equality of
sums (4) still hold, and this is su�cient to be able to prove the corresponding associativity property.

An important class ofmatrices is given by the non-negativematrices. It follows from the above results that
the class of non-negative matrices satis�es all axioms of a vector space, except for the existence of inverse
elements for addition, such a spacewas called a semi-vector space in [15]. Also distributivity and associativity
of multiplication are respected.

De�nition 3.15. A class U is called a semi-vector space over E+ if for all u, v, w ∈ U and λ, µ ∈ E+

1. u + v ∈ U.
2. u + (v + w) = (u + v) + w.
3. u + v = v + u.
4. 0 ∈ U and u + 0 = 0.
5. λu ∈ U.
6. λ(µu) = (λµ)u.
7. 1u = u.
8. λ(u + v) = λu + λv.
9. (λ + µ)u = λu + µu.

Theorem 3.16. Let M+
m×n(E+) be the class of non-negative matrices over E+. Then M+

m×n(E+) is a semi-vector
space overE+. Moreover, whenever the product of non-negativematrices overE+ is well-de�ned, it is distributive
and associative.

Proof. Part 1 and Part 5 of De�nition 3.15 follow from the fact that the sum and the product of two non-
negative external numbers are non-negative. The properties 2 - 4 follow from Proposition 3.4, with O the
neutral element. The properties 6 and 7 follow from Proposition 3.5, and Theorem 3.8 implies the properties
8 and 9. Let A,B, C ∈ M+

m×n(E+). Then it follows from Part 3 of Theorem 3.8 that A(B + C) = AB + AC and
(B + C)A = BA + CA, and from Part 3 of Corollary 3.14 thatA(BC) = (AB)C.

4 Determinants
We de�ne determinants of matrices with external numbers in the usual way through sums of signed products
of entries. We show that this value does not always correspond to the set of determinants of representatives.
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Common techniques for calculation often use distributivity, so they need to be applied with care, for they
may modify the neutrix part. We show that this is the case for the Laplace expansion. Using this expansion
we derive a lower bound for minors, and also an upper bound is derived. Then we give conditions for the
validity of the sum property for determinants. To calculate determinants in practice often the operations of
Gauss elimination are applied, in order to obtain a triangular matrix; in this context this means a matrix
with neutrices below or above the diagonal. This process searches for opposite terms, a context where the
distributivity law is no longer valid. The use of Gauss elimination with real coe�cients is helpful, but even
then we need sometimes conditions on the order of magnitude of minors and neutrix parts. In the �nal part
we give a condition implying that the determinant of a triangular matrix equals the product of the elements
on the diagonal.

4.1 De�nition of the determinant

De�nition 4.1. [21] LetA = (αij)n×n ∈Mn(E). The determinant ofA is the external number de�ned by

det(A) =
∑
σ∈Sn

sgn(σ)α1σ(1)α2σ(2) . . . αnσ(n), (6)

where Sn is the set of all permutations of {1, . . . , n}. We often denote the determinant of the matrixA by ∆.

It is not true in general that the above de�nition of determinant corresponds to the set of values of determi-
nants of representatives. We have equality in the case of n = 1 and n = 2, but for n ≥ 3 we make repeated use
of the same representatives in di�erent products, and thus do not respect the Minkovski rules of De�nition
2.2 properly.

Indeed, for n = 1 and A ≡ (α), with α ∈ E, one has det(α) = {a|a ∈ α}. For n = 2, let A =
(
α11 α12
α21 α22

)
.

Then we have the equality

det(A) = α11α22 − α21α12 = {a11a22 − a21a12|aij ∈ αij , 1 ≤ i, j ≤ 2}, (7)

for the determinant is a Minkowski sum of Minkowski products.
Now let n = 3 and

A =

α11 α12 α13
α21 α22 α23
α31 α32 α33

 .

Then it may no longer hold that the sum of products (6) is equal to the sum of products of representatives.
As for the latter, the Minkovski rules of De�nition 2.2 are not applied properly, because, say, for the terms
α11α22α33 and −α11α23α32 we choose repeatedly the same representative a11 of α11, as a consequence we
get only part of the value given by (6). In particular this means that the value obtained by the Rule of Sarrus
does not need to correspond to the set of values given by the Rule of Sarrus applied to representatives. We
give here an example.

Example 4.2. Let ε ' 0, ε ≠ 0 and

A =

1 +� 0 0
0 1 1 + ε
0 1 1

 .

Then det(A) = �. Let ε′ ' 0 and Âε′ be de�ned by

Âε′ =

1 + ε′ 0 0
0 1 1 + ε
0 1 1

 , (8)

and let S = {det(Âε′ )|ε′ ∈ �}. Then S = {−ε − εε′|ε′ ∈ �} = −(1 +�)ε ⊂ �.
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The following properties of determinants are obvious and proved using similar arguments as in classical
algebra.

Proposition 4.3. LetA ∈Mn(E).

1. det(A) = det(AT), whereAT is the transpose of the matrixA.
2. Let B be a matrix obtained from A by interchanging two rows. Then det(B) = −det(A). One has det(B) =

det(A) if det(A) is a neutrix.
3. The determinant of a matrix which has a row of neutrices is a neutrix.
4. The determinant of a matrix which has two identical rows (columns) is a neutrix.

We use the following notation for minors.

Notation 4.4. For 1 ≤ k < n we denote by ∆i1 ...ikj1 ...jk the k × kminor ofA containing only the rows {i1 . . . ik} and
columns {j1 . . . jk} of A. We may use the standard notation ∆i,j to denote the (i, j)-minor of A given by the
determinant of (n − 1) × (n − 1) submatrix ofAwhich results from removing the ith row and the jth column of
A.

4.2 Laplace expansion

Because of subdistributivity, the Laplace expansion of a determinant along a column or a row may not be
equal to the determinant. For example, if we expand the determinant in Example 4.2 along the �rst column
we obtain that

(1 +�)det
(
1 1 + ε
1 1

)
− 0det

(
0 0
1 1

)
+ 0det

(
0 0
1 1 + ε

)
= −(1 +�)ε ⊂ �.

So using products of representatives or the Laplace expansion possibly reduces the neutrix part, and even
may turnaneutricial determinant into a zeroless value.Wecomeback to this subjectwhenwediscuss singular
and non-singular matrices in Section 5.

In general the Laplace expansion of a determinant along a column (row) is always included in the deter-
minant.

Proposition 4.5. [22] LetA = (αij)n×n ∈Mn(E) and ∆ = det(A). Then for 1 ≤ j ≤ n,

(−1)j+1α1j∆1,j + · · · + (−1)j+nαnj∆n,j ⊆ ∆.

Proof. It follows from Part 2 of Proposition 4.3 that it su�ces to prove the proposition for j = 1. Let Sn be
the set of all permutations of {1, . . . , n} and σ ∈ Sn. The Laplace expansion along the �rst column and the



80 | Nam Van Tran and Imme van den Berg

property of subdistributivity yield

α11∆1,1 − α21∆2,1 + · · · + αn1(−1)1+n∆n,1
=α11

∑
σ∈Sn
σ(1)=1

sgn(σ)ασ(2)2 · · · ασ(n)n + α21
∑
σ∈Sn
σ(1)=2

sgn(σ)ασ(2)2 · · · ασ(n)n

+ · · · + αn1
∑
σ∈Sn
σ(1)=n

sgn(σ)ασ(2)2 · · · ασ(n)n

⊆
∑
σ∈Sn
σ(1)=1

α11
(
sgn(σ)ασ(2)2 · · · ασ(n)n

)
+
∑
σ∈Sn
σ(1)=2

α21
(
sgn(σ)ασ(2)2 · · · ασ(n)n

)
+ · · · +

∑
σ∈Sn
σ(1)=n

αn1
(
sgn(σ)ασ(2)2 · · · ασ(n)n

)

=
∑
σ∈Sn

sgn(σ)ασ(1)1 · · · ασ(n−1)(n−1)ασ(n)n = det


α11 · · · α1n
...

. . .
...

αn1 · · · αnn

 = ∆.

Equality for theLaplace expansionholds, ifwe expandalonga column (row) such that the relativeuncertainty
of all elements in this column are less than or equal to those of all the remaining elements.

Theorem 4.6. LetA = (αij)n×n ∈Mn(E). If there exists k ∈ {1, . . . , n} such that

max
1≤i≤n

R(αik) ≤ min
j≠k

1≤i,j≤n

R(αij), (9)

then
(−1)k+1α1k∆1,k + · · · + (−1)k+nαnk∆n,k = ∆.

Proof. We only prove the theorem for k = 1, the other cases are similar. The Laplace expansion along column
k = 1 yields

α11∆1,1 − α21∆2,1 + · · · + αn1(−1)1+n∆n,1
=α11

∑
σ∈Sn
σ(1)=1

sgn(σ)ασ(2)2 · · · ασ(n)n + α21
∑
σ∈Sn
σ(1)=2

sgn(σ)ασ(2)2 · · · ασ(n)n + · · ·

+ αn1
∑
σ∈Sn
σ(1)=n

sgn(σ)ασ(2)2 · · · ασ(n)n . (10)

Put βσi1 = sgn(σ)ασ(2)2 · · · ασ(n)n with σ ∈ Sn , σ(1) = i. We will show that

αi1
∑
σ∈Sn
σ(1)=i

sgn(σ)ασ(2)2 · · · ασ(n)n =
∑
σ∈Sn
σ(1)=i

sgn(σ)αi1ασ(2)2 · · · ασ(n)n

for all 1 ≤ i ≤ n. By Proposition 2.11 and assumption (9),

R(αi1) ≤max
1≤i≤n

R(αi1) ≤ min
1≤r≤n
2≤s≤n

R(αrs)

≤ min
1≤r≤n
2≤s≤n
r≠i

R(αrs) ≤ max
1≤r≤n
2≤s≤n
r≠i

R(αrs) = R(βσi1).
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Then by Proposition 2.12

αi1
∑
σ∈Sn
σ(1)=i

sgn(σ)ασ(2)2 · · · ασ(n)n =
∑
σ∈Sn
σ(1)=i

sgn(σ)αi1ασ(2)2 · · · ασ(n)n

for all 1 ≤ i ≤ n. From (10) we conclude that

α11∆1,1 − α21∆2,1 + · · · + αn1(−1)1+n∆n,1
=
∑
σ∈Sn
σ(1)=1

sgn(σ)α11ασ(2)2 · · · ασ(n)n +
∑
σ∈Sn
σ(1)=2

sgn(σ)α21ασ(2)2 · · · ασ(n)n

+ · · · +
∑
σ∈Sn
σ(1)=n

sgn(σ)αn1ασ(2)2 · · · ασ(n)n

=
∑
σ∈Sn

sgn(σ)ασ(1)1ασ(2)2 · · · ασ(n)n = det(A).

4.3 Reduced matrices and minors

We extend the notion of reduced matrix to matrices such that the maximal absolute value of an element is
of the form of 1 + A, with A ⊆ � a small neutrix. We give lower bounds for minors, which are useful when
studying Gauss elimination. Also upper bounds are given, as well for the associated neutrices.

De�nition 4.7. A matrixA = (αij)m×n ∈Mm,n(E), with |α| = 1 + A and A ⊆ �, is called a reduced matrix.

Reducedmatrices have in each column (row) aminor of (n−1)th-order at least of the same order ofmagnitude
as the determinant. The result has some relevance for Gauss elimination, for pivotsmay be expressed in terms
of minors [18], so it is better to be able to choose them not too small.

Proposition 4.8. [22] Let A = (αij)n×n ∈ Mn(E) be a reduced square matrix of order n. Suppose that ∆ is
zeroless. Then for each j ∈ {1, . . . , n} there exists i ∈ {1, . . . , n} such that

|∆i,j| > �∆.

Proof. For simplicity we prove only the case j = 1, the other cases are proved analogously. By Proposition 4.5
one has

α11∆1,1 − α21∆2,1 + · · · + αn1(−1)n+1∆n,1 ⊆ ∆.

Suppose that ∆i,1 ⊆ �∆ for 1 ≤ i ≤ n. Because the matrix is reduced, it holds that |αij| ≤ 1 +� for 1 ≤ i, j ≤ n.
So αi1∆i,1 ⊆ (1 +�)� ∆ = �∆ for 1 ≤ i ≤ n. Consequently,

α11∆1,1 − α21∆2,1 + · · · + αn1(−1)n+1∆n,1 ⊆ �∆.

Hence α11∆1,1 − α21∆2,1 + · · · + αn1(−1)n+1∆n,1 ⊆ ∆∩�∆, which is a contradiction to (1), for ∆ is zeroless.

Thepropositionbelowgives anupper bound for allminors of a reducedmatrix, andalso for the corresponding
neutrix parts.

Proposition 4.9. Let A = (αij)n×n ∈ Mn(E) be a reduced matrix. Let k ∈ {1, . . . , n} and 1 ≤ i1 < · · · < ik ≤
n, 1 ≤ j1 < · · · < jk ≤ n. Then

1. ∆i1 ...ikj1 ...jk ⊂£.
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2. N
(
∆i1 ...ikj1 ...jk

)
⊆ A. In particular N(∆) ⊆ A.

Proof. Let I = {i1, . . . , ik}, J = {j1, . . . , jk}. Let Sk be the set of all bijections σ: I → J.
1. BecauseA is a reduced matrix, it follows that |αij| ≤ 1 +� for all 1 ≤ i, j ≤ n. So

∣∣∣∆i1 ...ikj1 ...jk

∣∣∣ =
∣∣∣∣∣∣
∑
σ∈Sk

sgn(σ)αi1σ(i1) . . . αikσ(ik)

∣∣∣∣∣∣
≤
∑
σ∈Sk

∣∣αi1σ(i1)∣∣ . . . ∣∣αikσ(ik)∣∣ ≤ ∑
σ∈Sk

(1 +�)k

=k!(1 +�).

Because n ∈ N is standard and k ≤ n, it follows that k! �£. Consequently, k!(1 +�) �£. Hence ∆i1 ...ikj1 ...jk ⊂£.
2. BecauseA is a reduced matrix, it follows that |αij| ≤ 1 + A for all 1 ≤ i, j ≤ n, while A ⊆ �. So

N
(
∆i1 ...ikj1 ...jk

)
=N

∑
σ∈Sk

sgn(σ)αi1σ(i1) . . . αikσ(ik)


=
∑
σ∈Sk

N
(
αi1σ(i1) · · · αikσ(ik)

)
⊆
∑
σ∈Sk

N
(
(1 + A)k

)
=
∑
σ∈Sk

A = k!A = A.

When k = n we obtain that N(∆) ⊆ A.

4.4 Addition property

The addition property det(C) = det(A) + det(B) when B is equal to A, except for one line, and C is obtained
fromA andB by summing with respect to this line does not hold in full generality as shown in Example 4.10
below.

Example 4.10. Let A =
(

1 1
1 +� 1 +�

)
, B =

(
−1 −1

1 +� 1 +�

)
and C =

(
0 0

1 +� 1 +�

)
. Then det(A) =

det(B) = �, while det(C) = 0 ≠ � = det(A) + det(B).

General conditions for this addition property to hold are stated in the next proposition.

Proposition 4.11. Let k ∈ {1, . . . , n}. LetB = (βij)n×n , C = (γij)n×n ∈Mn(E) be matrices which possibly di�er
at row k, i.e. βij = γij for all 1 ≤ i, j ≤ n, i ≠ k where all βkj , γkj ∈ E. LetA = (αij)n×n ∈Mn(E) be de�ned by

αij =
{
βij if i ≠ k, 1 ≤ j ≤ n
βkj + γkj if i = k, 1 ≤ j ≤ n.

Then
detA ⊆ det(B) + det(C). (11)

Moreover, if
max
1≤i,j≤n
i≠k

R(αij) ≤ max
{
min
1≤j≤n

R(βkj), min
1≤j≤n

R(γkj)
}
, (12)

or βkj and γkj are not nearly opposite for all 1 ≤ j ≤ n, then (11) holds with equality instead of inclusion.
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Proof. By subdistributivity and the fact that αij = βij = γij, for i ≠ k, we have

det(A) =
∑
σ∈Sn

sgn(σ)α1σ(1) · · · αnσ(n)

=
∑
σ∈Sn

sgn(σ)α1σ(1) · · · α(k−1)σ(k−1)
(
βkσ(k) + γkσ(k)

)
α(k+1)σ(k+1) · · · αnσ(n)

⊆
∑
σ∈Sn

sgn(σ)β1σ(1) · · · β(k−1)σ(k−1)βkσ(k)β(k+1)σ(k+1) · · · βnσ(n)

+
∑
σ∈Sn

sgn(σ)γ1σ(1) · · · γ(k−1)σ(k−1)γkσ(k)γ(k+1)σ(k+1) · · · γnσ(n)

=det(B) + det(C).

We now assume (12). For each σ ∈ Sn , let λσ = sgn(σ)α1σ(1) · · · α(k−1)σ(k−1)α(k+1)σ(k+1) · · · αnσ(n). By Proposition
2.11 one has

R(λσ) = max
1≤i≤n
i≠k

R(αiσ(i)).

From (12) one derives that R(λσ) ≤ max
1≤i,j≤n
i≠k

R(αij) ≤ max{R(βkj), R(γkj)} for all 1 ≤ j ≤ n. By Theorem 2.10 we

have
λσ(βkj + γkj) = λσβkj + λσγkj , (13)

for all 1 ≤ j ≤ n.
If βkj and γkj are not nearly opposite, we also have (13). This means that for all σ ∈ Sn ,

sgn(σ)α1σ(1) · · · α(k−1)σ(k−1)
(
βkσ(k) + γkσ(k)

)
α(k+1)σ(k+1) · · · αnσ(n)

=sgn(σ)α1σ(1) · · · α(k−1)σ(k−1)βkσ(k)α(k+1)σ(k+1) · · · αnσ(n)
+sgn(σ)α1σ(1) · · · α(k−1)σ(k−1)γkσ(k)α(k+1)σ(k+1) · · · αnσ(n).

As a result,

det(A) =
∑
σ∈Sn

sgn(σ)α1σ(1) · · · αnσ(n)

=
∑
σ∈Sn

sgn(σ)α1σ(1) · · · α(k−1)σ(k−1)
(
βkσ(k) + γkσ(k)

)
α(k+1)σ(k+1) · · · αnσ(n)

=
∑
σ∈Sn

sgn(σ)β1σ(1) · · · β(k−1)σ(k−1)βkσ(k)β(k+1)σ(k+1) · · · βnσ(n)

+
∑
σ∈Sn

sgn(σ)γ1σ(1) · · · γ(k−1)σ(k−1)γkσ(k)γ(k+1)σ(k+1) · · · γnσ(n)

=det(B) + det(C).

4.5 On Gauss-elimination

The operations of Gauss-elimination as regards to determinants of amatrixA can be e�ectuated for rows and
columns, and because det(A) = det(AT), without restriction of generality we may consider only operations
of rows.

The e�ect of interchanging two rows of a matrix has been indicated in Proposition 4.3.2.
Because of subdistributivity, the operations of multiplying a row by an external number, and of adding a

multiple of one row to another, may generate inclusions instead of equalities. In the �rst case we may avoid
this by taking the external number to be su�ciently sharp, in particular by taking a real number. Even this
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may not be su�cient in the second case in the presence of too big neutrices or too big elements in the matrix.
Bounds are given to guarantee equality.

We start with the operation of multiplying a row by a scalar.

Proposition 4.12. Let α be an external number andA = (αij)n×n ∈Mn(E). Assume that R(α) ≤ min
1≤i≤n
1≤j≤n

R(αij). Let

k ∈ {1, . . . , n} andB = (βij)n×n with

βij =
{
αij if i ≠ k
ααij if i = k

for all 1 ≤ j ≤ n. Then det(B) = αdet(A). The result holds in particular for α ∈ R.

Proof. One has

det(B) =
∑
σ∈Sn

sgn(σ)β1σ(1) · · · βnσ(n)

=
∑
σ∈Sn

sgn(σ)α1σ(1) · · · α(i−1)σ(i−1)ααiσ(i)α(i+1)σ(i+1) · · · αnσ(n).

Put λσ = α1σ(1) · · · α(i−1)σ(i−1)αiσ(i)α(i+1)σ(i+1) · · · αnσ(n). Then R(λσ) = max
1≤i≤n

R(αiσ(i)) by Proposition 2.11. By the
assumption,

R(α) ≤ min
1≤i,j≤n

R(αij) ≤ max
1≤i≤n

R(αiσ(i)) = R(λσ) (14)

for all σ ∈ Sn . Then by Proposition 2.12

det(B) = α
∑
σ∈Sn

sgn(σ)α1σ(1) · · · αnσ(n) = αdet(A). (15)

Formulas (14) and (15) hold in particular if α ∈ R.

We may have a strict inclusion if we multiply a row by an external number α with relative uncertainty bigger

than some elements ofA. For instance, let α = � andA =
(
1 1
1 1

)
, and letB be obtained by multiplying the

�rst row ofA by α, i.e.B =
(
� �
1 1

)
. Then 0 = αdet(A) ⊂ det(B) = �.

The operation of adding a scalar multiple of one row of a matrix of real numbers may again lead to in-

clusions, for we may blow up neutrices. For example, letA =
(
1 1
� 1

)
and ω be an unlimited number. LetB

be the matrix which is obtained from the matrixA by adding a multiple ω of the second row to the �rst one.

Then B =
(
1 + ω� 1 + ω
� 1

)
. We see that det(A) = 1 + � while det(B) = ω�, so a zeroless determinant is

transformed into a neutrix containing it.
We present a general property on how determinants behave under the addition of a multiple of a row to

another row, and derive from it a condition of invariance.

Theorem 4.13. LetA = (αij)n×n ∈Mn(E), λ ∈ E and 1 ≤ p ≠ k ≤ n. LetA′ = (α′ij)n×n ∈Mn(E) be de�ned by

α′ij =
{
αij if i ≠ k
αkj + λαpj if i = k

for 1 ≤ j ≤ n. Assume that R(λ) ≤ min
1≤i≤n
1≤j≤n

R(αij) and |α| = max
1≤i≤n
1≤j≤n

|αij| is zeroless. Then

1. det(A′) ⊆ det(A) + λαn−1A.
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2. If λαn−1A ⊆ N(det(A)) and max
1≤i,j≤n
i≠k

R(αij) ≤ min
1≤j≤n

R(αkj), then det(A′) = det(A).

Proof. 1. Let 1 ≤ k ≠ p ≤ n. Let B be the matrix obtained fromA by replacing the row k with a copy of row p;
thenB takes the form

B =



α11 α12 · · · α1n
...

...
. . .

...
αp1 αp2 · · · αpn
...

...
. . .

...
αp1 αp2 · · · αpn
...

...
. . .

...
αn1 αn2 · · · αnn


.

By Propositions 4.11 and 4.12 we have

det(A′) ⊆ det(A) + λdet(B). (16)

Now det(B) is a neutrix since B has two identical rows. Because |α| is zeroless, we may choose a non-zero
representative a ∈ α such that |αij/a| ≤ 1 + � for all 1 ≤ i, j ≤ n. Let R be obtained from B by dividing every

entry by a, then R is a reduced matrix. Note that det
(
αpj αpj′
αpj αpj′

)
⊆ aA for 1 ≤ j < j′ ≤ n. This implies that

det(R) ⊆ A/a. Also, by Proposition 4.12 and Proposition 2.9.1

det(B) = andet(R) ⊆ anA/a = an−1A = αn−1A. (17)

The last equality holds because α is zeroless. From (16) and (17) we derive that det(A′) ⊆ det(A) + λαn−1A.
2. By Propositions 4.11 and 4.12 the inclusion (16) becomes now an equality, i.e.

det(A′) = det(A) + λdet(B). (18)

In addition, if λαn−1A ⊆ N(det(A)), by (17) it holds that λdet(B) ⊆ N(det(A)). Then we obtain from (18) that
det(A′) = det(A).

Observe that the �rst condition of Theorem 4.13 is automatically satis�ed if λ ∈ R. For reduced matrices the
�rst condition in Part 2 of Theorem 4.13 is simpli�ed into λA ⊆ N(det(A)).

4.6 Determinants of triangular matrices

Classically we use Gauss-elimination to transform a determinant into a determinant of a triangular matrix,
and then the determinant is the product of the elements on the diagonal. In the context of external numbers
the techniques of Subsection 4.5 generate neutrices instead of zeros, and by Theorem 4.13 the neutrix of the
determinant may be modi�ed. Proposition 4.15 shows that the determinant of a triangular matrix may not be
equal to the product of the entries on the diagonal, and again it will be needed to add a neutrix.

De�nition 4.14. Let A = (αij)n×n ∈ Mn(E). The matrix A is called upper triangular if αij is a neutrix for all
1 ≤ j < i ≤ n. The matrixA is called lower triangular if αij is a neutrix for all 1 ≤ i < j ≤ n. An upper triangular
or lower triangular matrix is called a triangular matrix.

A triangular matrix with determinant equal to a neutrix is given by A =
(
1 �
ω 1

)
, where ω is an unlimited

number. Then 1 = 1 · 1 ≠ det(A) = ω�. Next proposition gives an upper bound for such neutrices.
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Proposition 4.15. LetA = (αij)n×n be a triangular matrix. Assume that α is zeroless. IfA is reduced,

det(A) ⊆ α11α22 · · · αnn + A. (19)

In general
det(A) ⊆ α11α22 · · · αnn + αn−1A.

As a result det(A) = α11α22 · · · αnn if A is reduced and A ⊆ N(α11α22 · · · αnn), and in general if αn−1A ⊆
N(α11α22 · · · αnn).

Proof. Without loss of generality, we suppose thatA is an upper triangular matrix. We have

det(A) =
∑
σ∈Sn

sgn(σ)α1σ(1) · · · αnσ(n)

=α11 · · · αnn +
∑
σ∈Sn

∃i∈{1,...n},σ(i)≠i

sgn(σ)α1σ(1) · · · αnσ(n). (20)

Assume �rst that A is a reduced matrix. For σ ∈ Sn such that i ≠ σ(i) for some i with 1 ≤ i ≤ n, there exists
k ∈ {1, . . . , n} such that k > σ(k). Then αkσ(k) ≡ Akσ(k) is a neutrix. As a consequence α1σ(1) · · · αnσ(n) is also
a neutrix. Also |αij| ≤ 1 + � for all 1 ≤ i, j ≤ n, hence α1σ(1) · · · αnσ(n) ⊆ Akσ(k) ⊆ A. Because |α| = 1 + �, we
derive from (20) that det(A) ⊆ α11 · · · αnn + A.

Second, assume thatA is an arbitrary matrix such that α is zeroless. Let a ∈ α be non-zero andA′ = (α′ij)
with α′ij = αij/a for 1 ≤ i, j, ≤ n. Then A′ is a reduced upper triangular matrix. Also det(A) = andet(A′) ⊆
an(α′11 · · · α′nn + A/a) = α11 · · · αnn + an−1A = α11 · · · αnn + αn−1A. The remaining part of the theorem is now
a direct consequence.

5 Inverse matrices
The additive inverse andmultiplicative inverse of an external number α are de�ned up to a neutrix, for α−α =
N(α) and, if α is zeroless, one has α/α = 1 + R(α) with R(α) ⊆ �. Proposition 3.4 shows that the additive
inverse of a matrix of external numbers exists up to a neutricial matrix. We de�ne the multiplicative inverse
of amatrix of external numbers also with respect to a neutrix, contained in�. This neutrix is an upper bound
for the precision that can be obtained and the (not unique) inverse is de�ned in terms of inclusion.

The relationship between invertible matrices and non-singular matrices (matrices with zeroless determi-
nant) is investigated, as well as the possibility to determine inverses with the help of cofactors. Theorem 5.6
states that such inverses exist if the maximal absolute value of the elements of the matrix is zeroless, and the
determinant is not too small.

De�nition 5.1. LetA = (αij)n×n ∈Mn(E). The matrixA is called non-singular if det(A) is zeroless. Otherwise
we call it singular.

De�nition 5.2. Let A ∈ Mn(E) be a square matrix, N ⊆ � be a neutrix and In(N) = (δij) ∈ Mn(E) with

δij =
{
1 + N if i = j
N if i ≠ j

for all 1 ≤ i, j ≤ n. The matrix A is said to be invertible with respect to N if there exists

a square matrix B = (βij)n×n such that AB ⊆ In(N) and BA ⊆ In(N). Then B is called an inverse matrix of A
with respect to N and with abuse of notation we may writeB = A−1N .

If A is invertible with respect to N ⊆ �, it is invertible with respect to every neutrix M with N ⊆ M ⊆ �. In
case A is a real square matrix, the inverse matrix of A with respect to 0 becomes the classical one and we
simply writeA−1.
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De�nition 5.3. Let n ∈ N andA ∈Mn(E). Let Cij = (−1)i+j∆i,j for 1 ≤ i, j ≤ n. We call C = (Cij)n×n the cofactor
matrix ofA.

Even ifA is a non-singular matrix, the matrix 1
det(A)C

T is not always an inverse matrix ofAwith respect to a

neutrix. Indeed, let ε > 0 be in�nitesimal andA =
(
1 �
0 ε

)
. Then det(A) = ε is zeroless, soA is non-singular.

We haveB = 1
det(A)C

T =
(
1 �

ε
0 1

ε

)
. This implies thatAB =

(
1 �

ε
0 1

)
⊆ ̸ I2(N) for any N ⊆ �. HenceB is not

an inverse matrix ofA.

De�nition 5.4. LetA = (αij)m×n ∈Mm,n(E). A matrix P = (aij)m×n, with aij ∈ αij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, is
called a representative matrix of the matrixA.

Theorem 5.5. Let A = (αij)2×2 ∈ M2(E) be an invertible matrix with respect to a neutrix N ⊆ �. Then A is
non-singular.

Proof. Suppose that A is singular. Then 0 ∈ det(A). By (7) there exists a representative matrix P of A such
that det(P) = 0. LetB be an inversematrix ofAwith respect to some neutrix N ⊆ �, and Q be a representative
matrix ofB. Then

det(PQ) = det(P)det(Q) = 0. (21)

On the other hand, one hasAB ⊆ I2(N). Now PQ is a representative matrix of I2(N), so det(PQ) ≠ 0, contra-
dicting (21). HenceA is non-singular.

The result above does not hold any more for n > 2. This is related to the fact that the set of determinants of
representatives of a given matrix A may be strictly contained in det(A). In fact, every matrix of representa-

tives of a singular matrix may be non-singular. For example, consider the matrix A =

1 +� 0 0
0 1 1 + ε
0 1 1


with ε ' 0, ε ≠ 0 of Example 4.2. It is singular with determinant equal to �, but it was shown that the set
of determinants of matrices of representatives is equal to (1 + �)ε, so they are all non-singular. Also A is

invertible with respect to �. Indeed, we may take A−1� =


1

ε + 1 0 0

0 −1ε
1 + ε
ε

0 1
ε −1ε

. Then A−1� · A = A · A−1� =

1 +� 0 0
0 1 0
0 0 1

 ⊆ I�.
Theorem 5.6 below gives conditions such that non-singular matrices are invertible. If the matrix A is

reduced, a converse holds if det(A) is not so small as to be an absorber of A. In general det(A) should not be
an absorber of αnA, where α is supposed zeroless.

Theorem 5.6. LetA = (αij)n×n ∈Mn(E) be a non-singular matrix. Assume that

1. α is zeroless.
2. det(A) is not an absorber of αnA.

ThenA is invertible with respect to A/α andB ≡ 1
det(A)C

T is an inverse matrix with respect to A/α.

Proof. Note that A/α ⊆ �, because α is zeroless.We �rst assume thatA is a reduced, non-singularmatrix. Let
A = (αij)n×n with αij = aij +Aij. Let P = (aij)n×n, K = (Aij)n×n and ∆ = d+Dwith d = det(P) ≠ 0. Let Q = (bij)n×n
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be the inverse matrix of P, then bij =
cTij
d , with R = (cij)n×n the matrix of cofactors for P. Then the cofactor

matrix is of the form C = (cij +Cij)n×n ≡ (γij)n×n, and we de�neM = (Cij)n×n andB = 1
det(A)C

T = (bij +Bij)n×n,

where Bij = 1
d

(
CTij +

γTijD
d

)
for 1 ≤ i, j ≤ n. Let L = (Bij)n×n and let In be the identity matrix of order n.

We show that Bij ⊆ A ⊆ � for all 1 ≤ i, j ≤ n. Observe that D ⊆ A and Cij ⊆ A for 1 ≤ i, j ≤ n
by Proposition 4.9.2, and that Proposition 4.9.1 implies that d is limited and γij ⊆£ for all 1 ≤ i, j ≤ n. So
Bij ⊆ 1

d

(
A + A

d

)
= A
d +

A
d2 for 1 ≤ i, j ≤ n. Also det(A)/αn = det(A) is not an absorber of A, so neither is d, and

therefore dA = A = A
d . Hence Bij ⊆ A ⊆ � for 1 ≤ i, j ≤ n.

Next, we prove that
N(AB) = PL + KL + QK ⊆ (A)n×n ⊆ (�)n×n . (22)

Indeed, since P ⊆ (£)n×n and L ⊆ (A)n×n, we derive that

PL ⊆ (£)n×n(A)n×n = (A)n×n . (23)

Also K ⊆ (A)n×n, which implies that

KL ⊆ (A)n×n(A)n×n ⊆ (A)n×n . (24)

In addition,
KQ = K 1d (c

T
ij)n×n ⊆

1
d (A)n×n(£)n×n =

1
d (A)n×n = (A)n×n . (25)

Then (22) follows from (23)-(25).
As a consequenceAB = PQ + PL + KQ + KL ⊆ In + (A)n×n = In(N). Similarly, we derive thatBA ⊆ In(N).

HenceB = 1
det(A)C

T is an inverse matrix ofA with respect to A.
We now assume that A = (αij)n×n ∈ Mn(E) is an arbitrary non-singular matrix such that α is zeroless.

Let a ∈ α, which is non-zero. Then A = aG where G = (αij/a)n×n ≡ (ηij) is a reduced matrix. Because A is
non-singular, the matrix G is non-singular. Also η = α/a is zeroless. Let ηij = gij + Gij for all 1 ≤ i, j ≤ n and

G = max
1≤i,j≤n

Gij =
A
a ⊆ �. Also det(A)/α

n is not an absorber of A, hence

G = Aa ⊆
1
a

(
det(A)
αn

A
)
= 1
a

(
det(A)
an A

)
= det(G)Aa = det(G)G, (26)

implying that det(G) is not an absorber of G. Since G is reduced, by the above argument G−1 = 1
det(G)D

T is an

inverse matrix of G with respect to G ⊆ �, whereD is the cofactor matrix of G. LetH = 1
aG

−1 = (hij + Hij)n×n.

Then H = 1
detACT , with C the cofactor matrix of A. Then H is an inverse matrix of A with respect to G,

becauseAH = aG1aG
−1 = GG−1 ⊆ In(G), and similarly,HA ⊆ In(G).

The choice of the representative matrix P of A in the proof of Theorem 5.6 is arbitrary and P−1 is always a
representative ofA−1. The �nal result of this section is an obvious consequence of the fact that (P−1)−1 = P.

Corollary 5.7. Let A = (αij)n×n ∈ Mn(E) be invertible with respect to a neutrix N ⊆ � and let
(
A−1

)
N be an

inverse matrix with respect to N ofA. Then
(
A−1

)
N is invertible with respect to N andA is an inverse matrix of

A−1 with respect to N.

6 Linear dependence and independence
In this section we de�ne the notions of linear dependence and linear independence for sets of vectors with
external numbers. We give a characterization in terms of sets of vectors of representatives, and show that
several common properties of linear independence continue to hold.
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Remark 6.1. In the present and next section it is always assumed that the number of components of a vector,
and the cardinality of sets of vectors is standard �nite.

We start by introducing some useful notions for external vectors.

De�nition 6.2. Let β = (β1, . . . , βn) ∈ En. Then β is called an external vector. A vector b = (b1, . . . , bn),
where bi ∈ βi for 1 ≤ i ≤ n, is said to be a representative vector of β. Let A1, . . . , An be neutrices. Then
A ≡ (A1, . . . , An) is called a neutrix vector.

Neutrix vectors can be seen as generalizations of the zero vector, and they are used in the following de�nition
of linear dependence.

De�nition 6.3. A set of vectors V = {α1, . . . , αm} where αi ∈ En for 1 ≤ i ≤ m is called linearly dependent if
there exist real numbers t1, ..., tm ∈ R, at least one of them being non-zero, and a neutrix vector A such that

t1α1 + · · · + tmαm = A.

Otherwise, the set V is called linearly independent.

In case {α1, . . . , αm} ⊂ Rn, this notion coincides with the conventional notion of linear algebra, for A, being
a sum of real vectors, must be the zero vector. In the following characterization for linear independence A
also must be the zero vector.

Proposition 6.4. A set V = {α1, · · · , αm} of vectors in En is linearly independent if and only if the equality
t1α1 + · · · + tmαm = A, where A is a neutrix vector, implies t1 = · · · = tm = 0 and A is the zero vector.

Proof. Assume that V is a linearly independent set of vectors and t1α1 + · · · + tmαm = A, where A is a neutrix
vector. If there exists k ∈ {1, . . . , n} such that tk ≠ 0, by De�nition 6.3 the set V is linearly dependent, a
contradiction. Hence t1 = · · · = tn = 0 and A = (0, . . . , 0).

Conversely, suppose that V is a linearly dependent set. By De�nition 6.3, there exist t1, · · · tn ∈ R such
that t1α1 + · · · + tmαm = A where A is a neutrix vector, while tk ≠ 0 for some k with 1 ≤ k ≤ n, a contradiction.
Hence V is linearly independent.

Example 6.5. Let ε > 0 be in�nitesimal. Then the vectors α1 = (1 +�, ε�, −2 + ε£), α2 = (−2+�, ε£, 4 + ε£)
in E3 are linearly dependent, since 2α1 + α2 = (�, ε£, ε£) is a neutrix vector.

Example 6.6. The vectors α1 = (1+�, ε�), α2 = (�, 1+ ε£) with ε > 0, ε ' 0 inE2 are linearly independent.
Indeed, let t1, t2 ∈ R and A = (A1, A2) be a neutrix vector such that t1α1 + t2α2 = A. Then there exist vectors
x1 = (1 + η, εζ ) ∈ α1 and x2 = (ϑ, 1 + ελ) ∈ α2, where η, ζ , ϑ are in�nitesimal and λ is limited, such that
t1x1 + t2x2 = 0. It is equivalent with the system{

t1(1 + η) + t2ϑ = 0
t1ζ + t2(1 + ελ) = 0.

Then t1 = t2 = 0 because det
(
1 + η ϑ
ζ 1 + ελ

)
≠ 0, so t1α1 + t2α2 = 0. Hence the vectors α1, α2 are linearly

independent.

The next proposition generalizes some common elementary properties of linear dependence and indepen-
dence to external vectors. The proofs are obvious.

Proposition 6.7. Let S = {ξ1, · · · , ξm} be a set of vectors in En, and k ∈ N be standard.

1. If S contains a neutrix vector it is linearly dependent.
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2. If the set S is linearly dependent, any set of k vectors including S is linearly dependent.
3. If the set S is linearly independent, any set of vectors included in S is linearly independent.

In order to decide whether a set of vectors is linearly independent one often writes the set of vectors in matrix
form, and then the usual tools are determinants and Gauss-elimination. We already saw that in order to be
operational for matrices of external numbers, these tools should satisfy some conditions. So it is of interest
to characterize linear independence and dependence of vectors in En via representatives, i.e. real numbers,
and this is done in the theorem below.

Theorem 6.8. Let

V = {ξ1 = (ξ11, . . . , ξ1n), ξ2 = (ξ21, . . . , ξ2n), . . . , ξm = (ξm1, . . . , ξmn)} ⊂ En

be a set of vectors, with ξij = aij + Aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

1. The set V of vectors in En is linearly dependent if and only if whenever 1 ≤ i ≤ m, there exist representative
vectors xi = (xi1, . . . , xin) ∈ Rn of ξi such that {x1, . . . , xm} is linearly dependent.

2. The set V of vectors inEn is linearly independent if and only if every set {x1, . . . , xm} of vectors inRn, where
xi ∈ ξi for 1 ≤ i ≤ m, is linearly independent.

Proof. 1. Suppose that the vectors ξ1, . . . , ξm are linearly dependent. By De�nition 6.3 there exist real num-
bers t1, . . . , tm, at least one of them being non-zero, and a neutrix vector A = (A1, . . . , An) such that

t1ξ1 + t2ξ2 + · · · + tmξm = A.

Consequently (0, ..., 0) ∈ t1ξ1 + t2ξ2 + · · · + tmξm . Hence there exist vectors xi ∈ ξi , i = 1, ...,m such that
t1x1 + t2x2 + · · · + tmxm = 0. That is, the set {x1, ..., xm} is linearly dependent.

Conversely, suppose that there exists a linearly dependent set of vectors
V ′ = {x1, ..., xm} ⊂ Rn, with xi ∈ ξi for 1 ≤ i ≤ m; then let xi = (xi1, ..., xin) and ξij = xij + Xij,
where 1 ≤ j ≤ n. There exist real numbers t1, ..., tm, at least one of them being non-zero, such that
t1x1 + t2x2 + · · · + tmxm = 0. Then t1x1j + · · · + tmxmj = 0 for 1 ≤ j ≤ n. So

t1ξ1j + · · · + tmξmj =t1(x1j + X1j) + · · · + tm(xmj + Xmj)
=t1x1j + · · · + tmxmj + t1X1j + · · · + tmXmj
=t1X1j + · · · + tmXmj ≡ Aj ,

where Aj is a neutrix for 1 ≤ j ≤ n. Hence {ξ1, ..., ξm} is linearly dependent.
2. The result follows from Part 1 by contraposition.

Observe that a set of linearly dependent vectorsmay have a set of linearly independent representative vectors.

Example 6.9. Let ε > 0 be in�nitesimal. Consider the set of vectors{
ξ1 = (�,�), ξ2 = (0, ε)

}
.

Then {ξ1, ξ2} is linearly dependent by Proposition 6.7.1. Now we take x1 = (ε, 0) ∈ ξ1 and x2 = ξ2. Then
{x1, x2} is linearly independent.

We end with a generalization of a common property, which is a consequence of Theorem 6.8.

Proposition 6.10. Let S = {ξ1, · · · , ξm} be a set of vectors in En, where m ∈ N is standard. If m > n the set S
is linearly dependent.

Proof. Suppose S is linearly independent. For 1 ≤ j ≤ m, let xj be a representative vector of ξj. By Theorem 6.8
the set {x1, · · · , xm} is linearly independent, a contradiction. Hence S is linearly dependent.
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7 Notions of rank
Four notions of rank of a matrix are given. Three of them are obvious generalizations of classical properties,
the row rank, which is the rank of the set of row vectors, the column rank with analogous de�nition and the
minor rank, which is based on the maximal dimension of zeroless minors. However they may not be equal.
For this reason the fourth notion of rank is introduced, called strict rank, based on both the minors and the
rank of a representative matrix. The strict rank is not always de�ned, but if it exists, it is more operational
than the other notions. For example, it permits to prove that the row rank and the minor rank are equal, and
then they are also equal to the column rank, and in [36] it was helpful in solving singular systems of linear
equations with coe�cients and second member in terms of external numbers (the �exible systems of [21]).

Below we compare the ranks in various circumstances. The relation between determinants and determi-
nants of representative matrices not being obvious for higher dimensions, some results are only derived for
1 × 1 and 2 × 2 matrices.

De�nition 7.1. LetA = (αij) be an m × n matrix over E.

1. The row-rank of A is the maximal cardinality of a linearly independent set of row vectors of A and is
denoted by r(A), corresponding to the common notation of rank for sets of real vectors.

2. The column-rank ofA is themaximal cardinality of a linearly independent set of column vectors ofA and
is denoted by c(A).

3. Theminor-rank ofA is the largest natural numberm such that there exists a zeroless minor of orderm of
A. Then we write mr(A) = m.

4. The strict rank sr(A) ≡ s of A is de�ned if both A has a zeroless minor of order s and there exists a
representative matrix Â ofA with rank s.

Example 7.2. Let

A =
(
1 +� 2 +� −1 + ε£
−2 −4 + ε 2 + ε�

)
.

Then ∆1212 = ∆1213 = ∆1223 = �, while ∆11 = 1 +� is zeroless. Hence mr(A) = 1. It follows from the equality

2(1 +�, 2 +�, −1 + ε£) + (−2, −4 + ε, 2 + ε�) = (�,�, ε£)

that r(A) = 1. The representative matrix

Â =
(
1 2 −1
−2 −4 2

)

has rank 1. Hence also sr(A) = 1.

Example 7.3. We reconsider the matrix

A =

1 +� 0 0
0 1 1 + ε
0 1 1

 ,

where ε ' 0, ε ≠ 0, of Example 4.2. Theorem 6.8.2 applied to the representative matrices (8) shows that the
set of row vectors of A is linearly independent, so r(A) = 3. Analogously c(A) = 3. However we saw that

det(A) = �, and
(
1 1 + ε
1 1

)
is a non-singular minor. So mr(A) = 2, hence the minor rank is less than the

row rank. Also the rank of the representative matrices (8), being equal to 3, is di�erent from the minor rank.
This means that the strict rank ofA is not well-de�ned.
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In the remaining part of this section we investigate the relationship between the various ranks. In general the
minor rank is less than or equal to the row rank (Theorem 7.5 ), and they are equal if the strict rank is well-
de�ned (Theorem 7.6); then they are also equal to the column rank. We also have equality in some special
cases of low rank (Propositions 7.9, 7.10 and 7.11) and if the matrix is non-singular, i.e. if the minor-rank is
maximal (Theorem 7.4). We start with the latter theorem, since it is used further on.

Theorem 7.4. LetA =
(
αij
)
n×n ∈Mn (E) be non-singular. Then r(A) = n.

Proof. Let R = (aij)n×n be a representative matrix of A. Because det(A) is zeroless, det(R) ≠ 0, so R is non-
singular, with row rank equal to n. Hence the row vectors of R are linearly independent. The choice of the aij
being arbitrary, by Theorem 6.8.2 also the row vectors ofA are linearly independent. Hence r(A) = n.

Theorem 7.5. AssumeA = (αij)m×n ∈Mm,n(E) has minor rankmr(A) = r. Then there exists a linearly indepen-
dent set of r row vectors ofA. As a consequence r(A) ≥ mr(A).

Proof. Because mr(A) = r, we may suppose without loss of generality that the minor ∆1...r1...r is zeroless. Let
ξi = (αi1, . . . , αin), 1 ≤ i ≤ m be row vectors of A. Then ξ ′i ≡ (αi1, . . . , αir) are vectors in Er for 1 ≤ i ≤ m. By
Theorem 7.4 and the fact that ∆1...r1...r is zeroless, the set of vectors {ξ ′1, ..., ξ ′r} is linearly independent.

In order to prove that the set of vectors {ξ1, . . . , ξr} is linearly independent, assume that t1ξ1+· · ·+ trξr =
(A1, . . . , An), with A1, . . . , An neutrices. Then t1α1j + t2α2j + · · · + trαrj = Aj for 1 ≤ j ≤ n. It follows that
t1ξ ′1 + · · · + trξ ′r = (A1, . . . , Ar). Because {ξ ′1, . . . , ξ ′r} is linearly independent, it holds that t1 = · · · = tr = 0.
Hence the set of vectors {ξ1, ..., ξr} is linearly independent by Proposition 6.4.

Theorem 7.6. LetA be an m × n matrix over E. If sr(A) = r, thenmr(A) = r(A) = c(A) = r.

Proof. First, because sr (A) = r, there exists a zeroless minor of order r of A. By the de�nition of minor-rank
mr(A) ≥ r. Let k > r and Ai1 ...ik

j1 ...jk be a submatrix of order k of A. Because there exists a representative matrix

R ≡ (aij)m×n ofA such that rank(R) = r, we have det
(
Ri1 ...ikj1 ...jk

)
= 0. So det

(
Ai1 ...ik
j1 ...jk

)
is a neutrix. One concludes

that mr(A) = r.
We now show that r(A) = r. Notice that mr (A) = r, by Theorem 7.5 there exists a linearly independent

set of row vectors in A of cardinality at least r. On the other hand there exists a representative matrix R′ ≡(
a′ij
)
m×n of A with rank r. Without loss of generality, we may assume that det

(
R′1...r1...r

)
≠ 0. Let i ∈ {r +

1, . . . , n}. Then the set of vectors

{a′1 = (a′11, . . . , a′1n), . . . , a′r = (a′r1, . . . , a′rn), a′i = (a′i1, . . . , a′in)}

is linearly dependent. By Theorem 6.8.1 the set of vectors

{α1 = (α11, . . . , α1n), . . . , αr = (αr1, . . . , αrn), αi = (αi1, . . . , αin)}

is linearly dependent. So the row rank ofA is at most r. Combining, we obtain that r(A) = r.
One proves in analogous way that c(A) = r.

Theorem 7.7. Let A = (αij)m×n be a matrix over E. Assume that r(A) = r and there is a zeroless minor of order
r ofA. Then sr(A) = r and c(A) = r.

Proof. A linearly independent set of row vectors of A has up to r elements, so by Theorem 6.8 the same is
true for every set of representative vectors V = {a1, . . . , am}, where ai ∈ αi ≡ (αi1, . . . , αin) for 1 ≤ i ≤ m. It
follows that the rank of the representative matrix R ≡ (aij)m×n is r. Because there exists a zeroless minor of
order r ofA, we have sr(A) = r. Then c(A) = r by Theorem 7.6.

Let A = (αij)m×n ≡ (aij + Aij)m×n ∈ Mm,n(E). It was observed in Section 4 that only for m = n ≤ 2 there is a
straightforward relation between the determinants given by De�nition 6 and determinants of representative
matrices. This suggests that only for matrices of low rank there exists an obvious relation between the row
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rank and the minor rank, which can be established without recurring to the strict rank. Proposition 7.9 is a
converse to Theorem 7.4 for n = 1 and n = 2 Proposition 7.10 considers the case that if the minor rank is equal
to 1, it is equal to the row rank, and then also equal to the strict rank, and Theorem 7.11 the converse case for
ranks 1 or 2. We start with some notation.

Notation 7.8. Let A = (αij)m×n ≡ (aij + Aij)m×n ∈ Mm,n(E). For 1 ≤ i ≤ m we denote the ith row vector by
αi ≡ (αi1, · · · , αin), and write A1 ≡ max

1≤i≤m
Ai1 and AC1 = min

2≤j≤n
1≤i≤m

Aij.

Proposition 7.9. LetA = (αij)n×n ∈Mn,n(E). Assume that r(A) = n and that n = 1 or n = 2. Thenmr(A) = n.

Proof. The proposition is obvious if n = 1. For n = 2, by assumption {α1, α2} is linearly independent. Let
a1 = (a11, a12) be a representative vector of α1, and a2 = (a21, a22) be a representative vector of α2. By
Theorem6.8.2 the set {a1, a2} is linearly independent. Hence a11a22−a21a12 ≠ 0. Because a11, a12, a21, a22
are arbitrary, it follows from (7) that det(A) = α11α22 − α21α12 is zeroless. Hence mr(A) = 2.

Example 7.3 shows that Proposition 7.9 does no longer hold for n ≥ 3; it also shows that the next proposition
is not valid for n ≥ 2.

Proposition 7.10. LetA = (αij)m×n ∈Mm,n(E) be a reducedmatrix. Assume thatmr(A) = 1 and α11 is zeroless.

Suppose that (i) A1α11
⊆ AC1 for 1 ≤ i ≤ m, or (ii) all Aij are equal to some neutrix A, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Then r(A) = sr(A) = 1.

Proof. We let αij = aij + Aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The result is obvious for m = 1. Assume that 1 < m.
We will show that every set {α1, αi} is linearly dependent, where i ∈ {2, . . . ,m}. In view of Theorem 7.7 we
prove �rst that there exists a set of representative vectors

{a1 = (a11, . . . , a1n), ai = (ai1, . . . , ain)}

of {α1, αi}, such that the set of vectors {a1, ai} is linearly dependent. To do so, we prove that there is a set of
vectors

{a1 = (a11, . . . , a1n), ai = (ai1, . . . , ain)},

with apq ∈ αpq , p ∈ {1, i}, q ∈ {1, . . . , n} satisfying

det
(
a11 a1j
ai1 aij

)
= 0, (27)

for 2 ≤ j ≤ n.
For j = 2, because mr(A) = 1, the determinant

det
(
α11 α12
αi1 αi2

)

is a neutrix. Consequently, there exists aps ∈ αps for all p ∈ {1, i}, s ∈ {1, 2} such that

det
(
a11 a12
ai1 ai2

)
= 0. (28)

Hence formula (27) is true for j = 2. Let k ∈ N, 2 < k ≤ n be arbitrary. We need to prove that there is a column
ak = (a1k , aik)T such that apk ∈ αpk for p ∈ {1, i} and

det
(
a11 a1k
ai1 aik

)
= 0, (29)
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where a11, ai1 are de�ned by (28). Again because mr(A) = 1, the determinant

det
(
α11 α1k
αi1 αik

)

is a neutrix. As a result, there exists a representative matrix
(
a′11 a′1k
a′i1 a′ik

)
with a′ij ∈ αij such that

det
(
a′11 a′1k
a′i1 a′ik

)
= 0. (30)

As for case (i), we put

d = a11, t = det
(
a11 a′1k
ai1 a′ik

)
,

and
ε11 = a11 − a′11, εi1 = ai1 − a′i1, εik = −

t
d .

Observe �rst that εq1 ∈ Aq1 for all q ∈ {1, i}. We show that also εik ∈ Aik. By (30) one has

t =det
(
a′11 + ε11 a′1k
a′i1 + εi1 a′ik

)

=det
(
a′11 a′1k
a′i1 a′ik

)
+ det

(
ε11 a′1k
εi1 a′ik

)
= ε11a′ik − εi1a

′
1k .

Because εp1 ∈ Ap1 ⊆ A1 for p ∈ {1, i} and |a′hk| ≤ |αhk| ≤ 1 + � for h ∈ {1, i}, it holds that t ∈ A1. Also
d = a11 ∈ α11. We conclude that

εik = −
t
d ∈

A1
d ⊆ A

C
1 ⊆ Aik .

Hence apk ∈ αpk for all p ∈ {1, i} with a.k = (a1k , aik)T ≡ (a′1k , a
′
ik + εik)

T . In addition a.k satis�es formula
(29), for

det
(
a11 a′1k
ai1 a′ik + εik

)
= t + det

(
a11 0
ai1 εik

)
= t + εikd = t −

t
d d = 0.

As for case (ii), without loss of generality we assume that |α11| is maximal. Put u1 = (a11, ai1). The set of
column vectors {

u′1 = (a′11, a′i1)T , u′k = (a′1k , a
′
ik)
T
}

is linearly dependent. As a consequence, there exist real numbers s and δ11, δi1 ∈ A such that

u′k =su
′
1 = s(u1 + δ1) = su1 + sδ1, (31)

where δ1 ≡ (δ11, δi1) ∈ (A, A) and s = a′1k/a
′
11. Moreover |s| ≤ 1 +�, since |α11| is maximal. So sδ1 ∈ (A, A).

Put
uk = u′k − sδ1 ≡ (a1k , aik)T .

Then aqk ∈ αqk for q ∈ {1, i}. By (31) one has uk = su1, so {u1, uk} is linearly dependent. Hence

det
(
a11 a1k
ai1 aik

)
= 0,

which amounts again to (29).
In both cases, because k is arbitrary, formula (27) holds for 2 ≤ j ≤ n. We conclude that the set of vectors

{a1, ap} is linearly dependent. Then {α1, αp} is linearly dependent for all p ∈ {2, . . . ,m} by Theorem 6.8.
So a linear independent set of row vectors ofA cannot have more than one element, hence r(A) = 1 . The fact
that sr(A) = 1 follows by Theorem 7.7.
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Proposition 7.11. LetA = (αij)m×n ∈Mm×n(E). Assume that r(A) = r ≤ min{m, n}. If (i) r = 1 or (ii) r = 2 and
all Aij are equal to some neutrix A, thenmr(A) = r. As a result, sr(A) = r.

Proof. (i) Because the row rank of A is 1, some αpq is zeroless, where p ∈ {1, . . . ,m}, q ∈ {1, . . . , n}. This
implies that mr(A) ≥ 1. Also mr(A) ≤ r(A) = 1 by Theorem 7.5. It follows that mr(A) = 1.

(ii) By Theorem 7.5 it holds that mr(A) ≤ r(A) = 2. Suppose that all minors of order 2 are neutricial. Then
mr(A) ≤ 1. If mr(A) = 0, then r = 0, a contradiction. If mr(A) = 1, by part (ii) of Theorem 7.10 also r(A) = 1,
again a contradiction. Hence there exists a minor of order 2 which is zeroless. This means that mr(A) ≥ 2.
Combining, we obtain that mr(A) = 2.

8 Other approaches to error analysis in matrix calculus
Our approach to error analysis of matrices is characterized by treating, at every entry, an error as a set of
numbers around a speci�c value, resulting in a rather strong algebraic structure for error propagation, to
which basic notions of linear algebra can be adapted. In this section we intend to situate this approach with
respect to existingmethods, in particular classical asymptotic theory, Vander Corput’s neutrices of functions,
interval calculus, parametrization and probabilistic methods.

First we note that due to the Sorites property [12, 13, 37] of neutrices, we tend to model imprecisions
(say, coming frommeasuring and rounding o�) more than uncertainties, which may have other sources, like
imperfectmodels in the case of simpli�cations of too complex reality, or the impossibility to take into account
intrinsic stochastic aspects [34]. Also our approach is theoretical, and aims at a description of the behavior of
errors. In concrete situations it must be interpreted before it can be implemented in numerical analysis and
computer calculations; what is small, what can be neglected?

We share these problems of interpretation with common asymptotics based on neglection of Oh’s and
oh’s, which have been de�ned in terms of groups of functions in [3], and Van der Corput’s neutrix theory [5],
where also other groups of functions (for instance oscillatory functions) may be neglected. In these settings
algebraic operations are well-de�ned, but they do not lead to structures as strong as a Complete Arithmetical
Solid. For example, a set of functions in general does not allow for an order relation. Also, due the functional
dependence there are serious complications when trying to handle multiple errors individually, and it seems
that there exist no thorough applications to the propagation of errors in linear algebra or matrix calculus.

Common error analysis models errors more or less informally as small intervals around a value, resulting
from a measurement or an estimation [35]. This enables individual treatment of errors and algebraic oper-
ations on them, which have essentially the same form as the Minkowski operations of De�nition 2.2. The
informal nature of error analysis inhibits the development of a strong algebraic calculus and the formula-
tion of the basic notions of linear algebra. On the other hand, the implementation as an interval is obvious,
though discussion is possible on the interpretation of "small". Proper interval calculus [1, 14, 27, 30] is part of
formal mathematics, and stronger algebraic properties hold for operations. However it is no longer built on
the Minkowski operations of De�nition 2.2, and due to problems of subdistributivity and intersection not in
all cases simple laws can be given, moreover the algebraic operations do not need to respect order. Interval
analysis ofmatrix operations has been studied [30], though not from the point of view of algebraic properties.
Of all the approaches the implementation of interval calculus is perhaps the most straightforward.

Methods of attributing to imprecise factors one or more parameters taking values in de�nite intervals,
have been proposed for, in particular, linear programming. Multiparameter methods enable individual treat-
ment of errors and have been proposed by among others Gass and Saaty [19, 20] and Nedoma and Gall [17].
By their functional nature the implementation is straightforward, and their numerical implications are inten-
sively studied in e.g. [6]. Though one of the issues is the study of degeneracy [17], it has been recognized that
excessive complications seem to avoid the development of a thorough algebraic theory.

Fuzzy set theory [31, 38] treats uncertainties and imprecisions by dealing with sets in the form of repre-
sentative functions other than characteristic functions. By nature this approach does not address the Sorites
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property, but permits individual treatment of errors. The method has been applied to matrix calculus. Oper-
ations are clearly de�ned, and have been studied from the numerical point of view [31]. There does not seem
to exist a strong algebraic theory of matrix computations, including the basic notions of linear algebra.

There is a large variety of statistic and stochastic approaches to the analysis of errors [4, 23, 33], and they
are used to study uncertainties and imprecisions of several kinds, alsowithinmatrix calculus [7, 16, 28]. Com-
puter simulations facilitate their implementation, but the establishment of a theory of linear algebra in the
setting of error propagation with individual errors again seems to be complicated by the fact that probability
distributions are functional, thus behaving less appropriately under algebraic operations.

Summarizing, we defend that the approach by external numbers respects the imprecision of errors, while
allowing for a calculus for error propagation ofmoderate complexity, which yields insights at an intermediate
level between qualitative and quantitative analysis. This calculus has stronger algebraic properties than other
approaches, which however are mostly easier to implement.
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