Startseite Isothermal Crystallization Behavior of Poly(vinylidene fluoride) Based Membrane with Graphene Oxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Isothermal Crystallization Behavior of Poly(vinylidene fluoride) Based Membrane with Graphene Oxide

  • X.-T. Qiao , L. Gong , S.-H. Chen , S.-P. Zhan und X.-D. Sun
Veröffentlicht/Copyright: 30. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Graphene oxide (GO) sheets were obtained via an improved Hummer's method, and the Poly(vinylidene fluoride) (PVDF)/GO membranes employing GO as nucleating agent were prepared by solution casting. The crystalline behaviors and the crystallization kinetics of PVDF/GO membranes with varying GO concentration were investigated after isothermal crystallization at different temperatures. The results showed that the addition of GO induced the β-phase formation of PVDF. The spherulite diameter reached the peak value when the content of GO was 0.1 wt%, then reduced to the minimum value at 1 wt% GO within the tested temperature range of isothermal crystallization. It is worth mentioning that the relative fraction of β phase F(β) was dramatically improved to 0.85 for the PVDF/GO membrane with 0.5 wt% GO at 155°C. Furthermore, an enhancement of the crystallization rate was observed as the contents of GO increased in the system.


Correspondence address, Mail address: Lei Gong, Liaoning Engineering Laboratory for Special Optical Functional Crystals, Dalian University, Dalian, 116622, Liaoning, PRC, E-mail:

References

Achaby, M. E., Arrakhiz, F. Z., Vaudreuil, S., Essassi, E. M. and Qaiss, A., “Piezoelectric β-Polymorph Formation and Properties Enhancement in Graphene Oxide – PVDF Nanocomposite Films”, Appl. Surf. Sci., 19, 76687677 (2012) 10.1016/j.apsusc.2012.04.118Suche in Google Scholar

Avrami, M., “Kinetics of Phase Change, I. General Theory”, J. Chem. Phys.7, 11031112 (1939) 10.1063/1.1750380Suche in Google Scholar

Avrami, M., “Kinetics of Phase Change. III – Granulation, Phase Change, and Microstructure”, J. Chem. Phys., 9, 177184 (1941) 10.1063/1.1750872Suche in Google Scholar

Cai, D., Song, M., “Recent advance in functionalized graphene/polymer nanocomposites”, J. Mater. Chem., 37, 79067915 (2010) 10.1039/c0jm00530dSuche in Google Scholar

Cai, W., Piner, R. D., Stadermann, F. J., Park, S., Shaibat, M. A. and Ishii, Y., “Synthesis and Solid-State NMR Structural Characterization of C-13-Labeled Graphite Oxide”, Science, 5897, 18151817 (2008) 10.1126/science.1162369Suche in Google Scholar PubMed

Cho, S. H., Lee, J. S. and Jang, J.Poly(vinylidene fluoride)/nh\\r, 2\\r, – Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor”, ACS Appl. Mater. Interfaces, 18, 96689681 (2015) 10.1021/acsami.5b01430Suche in Google Scholar PubMed

Cho, S., Lee, J. S. and Jang, J., “Poly(vinylidene fluoride)/NH2\r-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor”, ACS Appl. Mater. Interfaces, 18, 96689681 (2015) 10.1021/acsami.5b01430Suche in Google Scholar

Du, X. S., Xiao, M., Meng, Y. Z. and Hay, A. S., “Direct Synthesis of Poly(arylenedisulfide)/Carbon Nanosheet Composites via the Oxidation with Graphite Oxide”, Carbon, 1, 195197 (2005) 10.1016/j.carbon.2004.06.036Suche in Google Scholar

Fabiano, S., Crispin, X., and Berggren, M., “Ferroelectric Polarization Induces Electric Double Layer Bistability in Electrolyte-Gated Field-Effect Transistors”, ACS Appl. Mater. Interfaces, 1, 438442 (2014) 10.1021/am404494hSuche in Google Scholar PubMed

Fan, D., Zhang, C., He, J., Hua, R., Zhang, Y. and Yang, Y., “Redox Chemistry between Graphene Oxide and Mercaptan”, J. Mater. Chem., 35, 1856418571 (2012) 10.1039/c2jm33467dSuche in Google Scholar

Gong, L., Yin, B., Li, L. P. and Yang, M. B., “Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution”, Int. Polym. Proc., 2, 217226 (2015) 10.3139/217.2988Suche in Google Scholar

Hu, K., Kulkarni, D. D., Choi, I. and Tsukruk, V. V., “Graphene–Polymer Nanocomposites for Structural and Functional Applications”, Prog. Polym. Sci., 11, 19341972 (2014) 10.1016/j.progpolymsci.2014.03.001Suche in Google Scholar

HummersW. S., OffemanR. E., “Preparation of Graphitic Oxide”, J. Am. Chem. Soc., 6, 13391939 (1958) 10.1021/ja01539a017Suche in Google Scholar

Jang, J. W., Min, B. G., Yeum, J. H. and Jeong, Y. G., “Structures and Physical Properties of Graphene/PVDF Nanocomposite Films Prepared by Solution-Mixing and Melt-Compression”, Fiber. Polym., 8, 13321338 (2013) 10.1007/s12221-013-1332-8Suche in Google Scholar

Jin, Y. J., Min, S. K., Han, M. J. and Shin, C. M., “Graphite Oxide/Poly(methyl methacrylate) Nanocomposites Prepared by a Novel Method Utilizing Macroazoinitiator”, Compos. Sci. Technol., 2, 186191 (2009) 10.1016/j.compscitech.2008.09.039Suche in Google Scholar

Ke, K., Pötschke, P., Jehnichen, D., Fischer, D. and Voit, B., “Achieving β-Phase Poly(vinylidene fluoride) from Melt Cooling: Effect of Surface Functionalized Carbon Nanotubes”, Polymer, 2, 611619 (2014) 10.1016/j.polymer.2013.12.014Suche in Google Scholar

Kuila, T., Bose, S., Hong, C. E., Uddin, M. E., Khanra, P. and Kim, N. H., “Preparation of Functionalized Graphene/Linear Low Density Polyethylene Composites by a Solution Mixing Method”, Carbon, 3, 10331037 (2011) 10.1016/j.carbon.2010.10.031Suche in Google Scholar

Kuila, T., Bose, S., Mishra, A. K. and Khanra, P., “Effect of Functionalized Graphene on the Physical Properties of Linear Low Density Polyethylene Nanocomposites”, Polym. Test., 1, 3138 (2012) 10.1016/j.polymertesting.2011.09.007Suche in Google Scholar

Kulkarni, D. D., Choi, I., Singamaneni, S. S. and Tsukruk, V. V., “Graphene Oxide Polyelectrolyte Nanomembranes”, ACS Nano, 8, 46674676 (2010) PMid:20669898; 10.1021/nn101204dSuche in Google Scholar PubMed

Liu, P., Gong, K. and Xiao, P., “Preparation and Characterization of Poly(vinyl acetate)-Intercalated Graphite Oxide”, Carbon, 12, 20732075 (1999) 10.1016/S0008-6223(99)00219-5Suche in Google Scholar

Lovinger, A. J., “Annealing of Poly(vinylidene fluoride) and Formation of a Fifth Phase”, Macromolecules, 1, 4044 (1982) 10.1021/ma00229a008Suche in Google Scholar

Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. and Slesarev, A., “Improved Synthesis of Graphene Oxide”, ACS Nano, 8, 48064814 (2010) 10.1021/nn1006368Suche in Google Scholar PubMed

Mohamadi, S., Sharifi-Sanjani, N., “Investigation of the Crystalline Structure of PVDF in PVDF/PMMA/Graphene Polymer Blend Nanocomposites”, Polym. Compos., 9, 14511460 (2011) 10.1002/pc.21175Suche in Google Scholar

Niyogi, S., Bekyarova, E., Itkis, M. E, Mcwilliams, J. L., Hamon, M. A. and Haddon, R. C., “Solution Properties of Graphite and Graphene”, J. Am. Chem. Soc., 24, 77207721 (2006) PMid:16771469; 10.1021/ja060680rSuche in Google Scholar PubMed

Pokharel, P., Truong, Q. T. and Dai, S. L., “Multi-Step Microwave Reduction of Graphite Oxide and its Use in the Formation of Electrically Conductive Graphene/Epoxy Composites”, Composites Part B, 18, 187193 (2014) 10.1016/j.compositesb.2014.04.013Suche in Google Scholar

Qian, R., Yu, J., Wu, C., Zhai, X. and Jiang, P., “Alumina-Coated Graphene Sheet Hybrids for Electrically Insulating Polymer Composites with High Thermal Conductivity”, RSC Adv., 38, 1737317379 (2013) 10.1039/c3ra42104jSuche in Google Scholar

Salavagione, H. J., Gómez, M. A. and Martínez, G., “Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol)”, Macromolecules, 17, 8386 (2009) 10.1021/ma900845wSuche in Google Scholar

Salimi, A., Yousefi, A. A., “Analysis Method: FTIR studies of β-Phase Crystal Formation in Stretched PVDF Films”, Polym. Test., 6, 699704 (2003) 10.1016/S0142-9418(03)00003-5Suche in Google Scholar

Sharma, T., Je, S. S., Gill, B. and Zhang, J. X. J., “Patterning Piezoelectric Thin Film PVDF–TrFE Based Pressure Sensor for Catheter Application”, Sens. Actuators, A, 2, 8792 (2012) 10.1016/j.sna.2011.08.019Suche in Google Scholar

Si, Y., Samulski, E. T., “Synthesis of Water Soluble Graphene”, Nano Lett., 6, 16791682 (2008) PMid:18498200; 10.1021/nl080604hSuche in Google Scholar PubMed

Sinha, T. K., Ghosh, S. K., Maiti, R., Jana, S., Adhikari, B., Mandal, D. and Ray, S. K., “Graphene-Silver Induced Self-Polarized PVDF Based Flexible Plasmonic Nanogenerator towards the Realization for New Class of Self Powered Optical Sensor”, ACS Appl. Mater. Interfaces, 24, 1498614993 (2016) 10.1021/acsami.6b01547Suche in Google Scholar PubMed

Stankovich, S., Piner, R. D., Nguyen, S. B. T. and Ruoff, R. S., “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets”, Carbon, 15, 33423347 (2006) 10.1016/j.carbon.2006.06.004Suche in Google Scholar

Tang, C. W., Li, B., Sun, L. L., Lively, B. and Zhong, W. H., “The Effects of Nanofillers, Stretching and Recrystallization on Microstructure, Phase Transformation and Dielectric Properties in PVDF Nanocomposites”, Eur. Polym. J., 6, 10621072 (2012) 10.1016/j.eurpolymj.2012.04.002Suche in Google Scholar

Wang, D., Zhou, T., Zha, J. W., Zhao, J., Shi, C. Y. and Dang, Z. M., “Functionalized Graphene–BaTiO3/Ferroelectric Polymer Nanodielectric Composites with High Permittivity, Low Dielectric Loss, and Low Percolation Threshold”, J. Mater. Chem. A, 20, 61626168 (2013) 10.1039/c3ta10460eSuche in Google Scholar

Wang, J. Y., Yang, S. Y., Huang, Y. L., Tien, H. W., Chin, W. K. and Ma, C. C., “Preparation and Properties of Graphene Oxide/Polyimide Composite Films with Low Dielectric Constant and Ultrahigh Strength via in situ Polymerization”, J. Mater. Chem., 35, 1356913575 (2011). 10.1039/c1jm11766aSuche in Google Scholar

Wang, S., Tambraparni, M., Qiu, J., Tipton, J. and Dean, D., “Thermal Expansion of Graphene Composites”, Macromolecules, 14, 52515255 (2009) 10.1021/ma900631cSuche in Google Scholar

Xie, L., Huang, X., Yang, K., Li, S. and Jiang, P., “Grafting to’ Route to PVDF-HFP-GMA/BaTiO3 Nanocomposites with High Dielectric Constant and High Thermal Conductivity for Energy Storage and Thermal Management Applications”, J. Mater. Chem. A, 15, 52445251 (2014) 10.1039/c3ta15156eSuche in Google Scholar

Xu, Z., Gao, C., “Polymerization Approach to Graphene-Reinforced Nylon-6 Composites”, Macromolecules, 16, 67166723 (2010) 10.1021/ma1009337Suche in Google Scholar

Yang, X., Li, L., Shang, S. and Tao, X. M., “Synthesis and Characterization of Layer-Aligned Poly(vinyl alcohol)/Graphene Nanocomposites”, Polymer, 15, 34313435 (2010) 10.1016/j.polymer.2010.05.034Suche in Google Scholar

Zhang, X., Ma, Y., Zhao, C. and Yang, W., “High Dielectric Performance Composites with a Hybrid BaTiO3/Graphene as Filler and Poly(vinylidene fluoride) as Matrix”, ECS J. Solid State Sci. Technol., 5, N47N54 (2015) 10.1149/2.0291505jssSuche in Google Scholar

Received: 2018-11-17
Accepted: 2020-05-10
Published Online: 2020-07-30
Published in Print: 2020-08-13

© 2020, Carl Hanser Verlag, Munich

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3786/html
Button zum nach oben scrollen