Startseite Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies

  • V. K. Konaganti , E. Behzadfar , M. Ansari , E. Mitsoulis und S. G. Hatzikiriakos
Veröffentlicht/Copyright: 10. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Extrudate swell of industrial-grade high-molecular mass high-density polyethylenes (HDPEs) in flat/slit dies is studied using both experiments and simulations. The experimental set-up consists of an optical micrometer to measure the extrudate dimensions and a pair of radiation heaters to control the extrudate temperature outside the die attached to the capillary rheometer. The simulation of extrudate swell phenomenon is carried out by using a well-known integral K-BKZ model. The effects of several rheological characteristics, die characteristics, and processing conditions on swell measurements are studied systematically, and the corresponding two-dimensional, steady-state numerical predictions are presented in this paper. This study includes the effects of polymer molecular characteristics, apparent shear rate, die geometrical characteristics (length to die gap (L/H) and width to die gap (W/H)), and distance from the die exit. It is found that the integral K-BKZ model predicts well both the width and thickness extrudate swells. Extrudate swell measurements demonstrate that the thickness swell is predominant in comparison with width swell.


*Correspondence address, Mail address: Savvas G. Hatzikiriakos, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada, E-mail:

References

Ahn, Y. C., Ryan, M. E., “Analysis of Extrudate Swell From an Annular Die”, Comp. Fluids, 2, 267239 (1992) 10.1016/0045-7930(92)90025-QSuche in Google Scholar

Al-Muslimawi, A., Tamaddon-Jahromi, H. and Webster, M. F. Y. W., “Simulation of Viscoelastic and Viscoelastoplastic Die-Swell Flows”, J. Non-Newtonian Fluid Mech., 191, 4556 (2013) 10.1016/j.jnnfm.2012.08.004Suche in Google Scholar

Ansari, M., Inn, Y. W., Sukhadia, A. M., Deslauriers, P. J. and Hatzikiriakos, S. G., “Wall Slip of HDPEs: Molecular Weight and Molecular Weight Distribution Effects”, J. Rheol., 57, 927948 (2013a) 10.1122/1.4801758Suche in Google Scholar

Ansari, M., Mitsoulis, E. and Hatzikiriakos, S. G., “Capillary Extrusion and Swell of A HDPE Melt Exhibiting Slip”, Adv. Polym. Techn., 32, E369-E385 (2013b) 10.1002/adv.21285Suche in Google Scholar

Baird, D. G., Collias, D. I., “Chapter 7 Extrusion Dies”, in Polymer Processing: Principles and Design, Butterworth-Heinemann, Newton, MA, USA, p. 177211 (1995)Suche in Google Scholar

Barakos, G., Mitsoulis, E., “Numerical Simulation of Extrusion through Orifice Dies and Prediction of Bagley Correction for an IUPAC-LDPE Melt”, J. Rheol., 39, 193209 (1995) 10.1122/1.550700Suche in Google Scholar

Behzadfar, E., Ansari, M., Konaganti, V. K. and Hatzikiriakos, S. G., “Extrudate Swell of a HDPE Melts: I. Experimental”, J. Non-Newtonian Fluid Mech., 225, 8693 (2015) 10.1016/j.jnnfm.2015.07.008Suche in Google Scholar

Béreaux, Y., Charmeau, J. Y. and Balcaen, J., “Optical Measurement and Modelling of Parison Sag and Swell in Blow Moulding”, Int. J. Mater. Form., 5, 199211 (2012) 10.1007/s12289-011-1040-0Suche in Google Scholar

Cogswell, F. N, Lamb, P., “Polymer Properties Relevant in Melt Processing”, Plastics and Polymers, 38, 331342 (1970)Suche in Google Scholar

Dutta, A., Ryan, M. E., “A Study of Parison Development in Extrusion Blow Molding”, J. Non-Newton. Fluid Mech., 10, 235256 (1982) 10.1016/0377-0257(82)80003-7Suche in Google Scholar

Glascock, D., U.S. Patent 20 070 225 939 (2007)10.1088/1126-6708/2007/04/070Suche in Google Scholar

Goublomme, A., Crochet, M. J., “Numerical Prediction of Extrudate Swell of a High-Density Polyethylene: Further Results”, J. Non-Newtonian Fluid Mech.47, 281287 (1993) 10.1016/0377-0257(93)80055-GSuche in Google Scholar

Goublomme, A., Draily, B. and Crochet, M. J., “Numerical Prediction of Extrudate Swell of a High-Density Polyethylene”, J. Non-Newtonian Fluid Mech., 44, 171195 (1992) 10.1016/0377-0257(92)80050-8Suche in Google Scholar

Graessley, W. W., Glasscock, S. D. and Crawley, R. L., “Die Swell in Molten Polymers”, Trans. Soc. Rheol., 14, 519544, (1970) 10.1122/1.549177Suche in Google Scholar

Han, C. D., “Wall Normal Stresses and Die Swell Behavior of Viscoelastic Polymeric Melts in Flow through Converging Ducts”, AIChE. J., 19, 649651 (1973) 10.1002/aic.690190339Suche in Google Scholar

Housiadas, K., Tsamopoulos, J., “Unsteady Extrusion of a Viscoelastic Annular Film: I. General Model and its Numerical Solution”, J. Non-Newtonian Fluid Mech., 88, 229259 (2000) 10.1016/S0377-0257(99)00022-1Suche in Google Scholar

Huang, D., White, J. L., “Experimental and Theoretical Investigation of Extrudate Swell of Polymer Melts from Small (Length)/(Cross-Section) Ratio Slit and Capillary Dies”, Polym. Eng. Sci., 20, 182189 (1980) 10.1002/pen.760200303Suche in Google Scholar

Huang, D., White, J. L., “Extrudate Swell From Slit and Capillary Dies: An Experimental and Theoretical Study”, Polym. Eng. Sci., 19, 609616 (1979) 10.1002/pen.760190904Suche in Google Scholar

Huang, H. X., Li, J. C., “Fast Online Acquisition and Analysis for Parison Swell and Sag in Blow Molding”, J. Appl. Polym. Sci., 101, 23992406 (2006) 10.1002/app.23881.Suche in Google Scholar

Kalyon, D., Tan, V. and Kamal, M. R., “The Dynamics of Parison Development in Blow Molding”, Polym. Eng. Sci., 20, 773777 (1980) 10.1002/pen.760201202Suche in Google Scholar

Kalyon, D. M., Kamal, M. R., “An Experimental Investigation of Capillary Extrudate Swell in Relation to Parison Swell Behavior in Blow Molding”, Polym. Eng. Sci., 26, 508516 (1986) 10.1002/pen.760260709Suche in Google Scholar

Kiriakidis, D. G., Mitsoulis, E., “Viscoelastic Simulations of Extrudate Swell for an HDPE Melt through Slit and Capillary Dies”, Adv. Polym. Techn., 12, 107117 (1993) 10.1002/adv.1993.060120201Suche in Google Scholar

Konaganti, V. K., Ansari, M., Mitsoulis, E. and Hatzikiriakos, S. G., “Extrudate Swell of a High-Density Polyethylene Melt: II. Modeling Using Integral and Differential Constitutive Equations”, J. Non-Newtonian Fluid Mech., 225, 94105 (2015) 10.1016/j.jnnfm.2015.07.005Suche in Google Scholar

Koopmans, R. J., “Die Swell-Molecular Structure Model for Linear Polyethylene”, J. Polym. Sci. Part A: Polym. Chem., 26, 11571164, (1988) 10.1002/pola.1988.080260416Suche in Google Scholar

Luo, X. L., Mitsoulis, E., “Memory Phenomena in Extrudate Swell Simulations for Annular Dies”, J. Rheol., 33, 13071327 (1989) 10.1122/1.550053Suche in Google Scholar

Luo, X. L., Tanner, R. I., “A Streamline Element Scheme for Solving Viscoelastic Flowproblems Part II: Integral Constitutive Models”, J. Non-Newtonian Fluid Mech., 22, 6189 (1986) 10.1016/0377-0257(86)80004-0Suche in Google Scholar

Luo, X. L., Tanner, R. I., “Finite Element Simulation of Long and Short Circular Die Extrusion Experiments Using Integral Models”, Int. J. Num. Meth. Eng.25, 922 (1988) 10.1002/nme.1620250104Suche in Google Scholar

Maziers, E., Pestiaux, P., US Patent 7514032 (2009)Suche in Google Scholar

Mendelson, R. A., Finger, F. L., “High-Density Polyethylene Melt Elasticity – Some Anomalous Observations on the Effects of Molecular Structure”, J. Appl. Polym. Sci., 19, 10611078 (1975) 10.1002/app.1975.070190414Suche in Google Scholar

Mitsoulis, E., Hatzikiriakos, S. G., Christodoulou, K. and Vlassopoulos, D., “Sensitivity Analysis of the Bagley Correction to Shear and Extensional Rheology”, Rheol. Acta, 37, 438448 (1998) 10.1007/s003970050131Suche in Google Scholar

Mitsoulis, E., Hatzikiriakos, S. G., “Bagley Correction: The Effect of Contraction Angle and its Prediction”, Rheol. Acta42, 309320 (2003) 10.1007/s00397-003-0294-ySuche in Google Scholar

Mitsoulis, E., “Chapter 4 Computational Polymer Processing”, in Modeling and Simulation in Polymers, Gujrati, P. D., Leonov, A. I. (Eds.), Wiley-VCH Verlag, Weinheim, Germany, p. 127195 (2010) 10.1002/9783527630257.ch4Suche in Google Scholar

Mitsoulis, E., Hatzikiriakos, S. G., “Annular Extrudate Swell of a Fluoropolymer Melt”, Int. Polym. Proc., 5, 535546 (2012) 10.3139/217.2601Suche in Google Scholar

Papanastasiou, A. C., Scriven, L. E. and Macosko, C. W., “An Integral Constitutive Equation for Mixed Flows: Viscoelastic Characterization”, J. Rheol., 27, 387410 (1983) 10.1122/1.549712Suche in Google Scholar

Reddy, K. R., Tanner, R. I., “Notes: On the Swelling of Extruded Plane Sheets”, J. Rheol., 22, 661665 (1978) 10.1122/1.549499Suche in Google Scholar

Rogers, M. G., “Some Studies on the Swelling Behavior of Polyethylene”, J. Appl. Polym. Sci., 14, 16791689 (1970) 10.1002/app.1970.070140703Suche in Google Scholar

Sienz, J., Bates, S. J. and Pittman, J. F. T., “Flow Restrictor Design for Extrusion Slit Dies for a Range of Materials: Simulation and Comparison of Optimization Techniques”, Finite Elem. Anal. Des., 42, 430453 (2006) 10.1016/j.finel.2005.06.008Suche in Google Scholar

Swan, P. L., Kamal, M. R., Garcia-Rejon, A. and Cielo, P., “Optical On-Line Measurement of the Thickness Distribution of Blow Molding Parisons”, Polym. Eng. Sci., 36, 985992 (1996) 10.1002/pen.10486Suche in Google Scholar

Tanner, R. I., “A Theory of Die-Swell Revisited”, J. Non-Newton. Fluid Mech., 129, 8587, (2005) 10.1016/j.jnnfm.2005.05.010Suche in Google Scholar

Tanner, R. I., “A Theory of Die-Swell”, J. Polym. Sci. Part B: Polym. Phys., 8, 20672078 (1970) 10.1002/pol.1970.160081203Suche in Google Scholar

Tanoue, S., Iemoto, Y., “Effect of Die Gap Width on Annular Extrudates by the Annular Extrudate Swell Simulation in Steady-States”, Polym. Eng. Sci., 39, 21722180 (1999) 10.1002/pen.11606Suche in Google Scholar

Utracki, L. A., Bakerdjian, Z. and Kamal, M. R., “A Method for the Measurement of the True Die Swell of Polymer Melts”, J. Appl. Polym. Sci., 19, 481501 (1975) 10.1002/app.1975.070190213Suche in Google Scholar

Vlachopoulos, J., Chan, T. W., “A Comparison of Melt Fracture Initiation Conditions in Capillaries and Slits”, J. Appl. Polym. Sci., 21, 11771187 (1977) 10.1002/app.1977.070210502Suche in Google Scholar

Vlachopoulos, J., Horie, M. and Lidorikis, S., “An Evaluation of Expressions Predicting Die Swell”, 16, 669685 (1972) 10.1122/1.549269Suche in Google Scholar

Wagner, M. H., “Analysis of Stress-Growth Data for Simple Extension of a Low-Density Branched Polyethylene Melt”, Rheol. Acta, 15, 133135 (1976) 10.1007/BF01517504Suche in Google Scholar

Received: 2015-12-03
Accepted: 2015-12-29
Published Online: 2016-05-10
Published in Print: 2016-05-29

© 2016, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Research and Application of Wireless Temperature Measurement Device in High Temperature Enclosed Environment
  5. Influence on Product Quality by pvT-Optimised Processing in Injection Compression Molding
  6. Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming
  7. Influence of Processing Parameters and Composition on the Effective Compatibilization of Polypropylene–Poly(ethylene terephthalate) Blends
  8. Impact Modification of Isotactic Polypropylene with Ethylene-Propylene Diene Monomer Rubber
  9. Impact Behavior of Continuous Biaxial Reinforced Composites Based on Bio-Polyamides and Man-Made Cellulose Fibres
  10. Preparation and Anti-Fouling Property of Acryloylmorpholine-Grafted PVDF Membrane: The Effect of Cross-Linking Agent
  11. Fine Filament Formation Behavior of Polymethylpentene and Polypropylene near Spinneret in Melt Blowing Process
  12. Fracture Toughness of PP/EPDM/Nano-Ternary Composites: The Role of Distribution of Inorganic Particles
  13. CO2 Laser Ablation of Microchannel on PMMA Substrate for Effective Fabrication of Microfluidic Chips
  14. A Novel Micro Wall Slip Model Based on Chain Length and Temperature
  15. Electrical and Mechanical Properties of Antistatic Poly(vinyl chloride) Composites Filled with Silver Plated Hollow Glass Microspheres
  16. Prototype System to Study the Effect of Weld Lines on the Performance of Extruded Profiles
  17. Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies
  18. PPS News
  19. PPS News
  20. Seikei Kakou Abstracts
  21. Seikei-Kakou Abstracts
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3215/pdf
Button zum nach oben scrollen