Home Impact Modification of Isotactic Polypropylene with Ethylene-Propylene Diene Monomer Rubber
Article
Licensed
Unlicensed Requires Authentication

Impact Modification of Isotactic Polypropylene with Ethylene-Propylene Diene Monomer Rubber

  • J. Banerjee , P. Soliya , M. B. Pallavi , P. Mukhopadhyay , S. Bandyopadhyay , D. Chakrabarty and K. Dutta
Published/Copyright: May 10, 2016
Become an author with De Gruyter Brill

Abstract

The present work was done to improve the impact property of isotactic polypropylene (PP), especially at low temperatures, by incorporating ethylene propylene diene monomers (EPDM). This was done by ensuring compatibility between the two polymers with phase modifiers polyethylene grafted with maleic anhydride (PE-g-MA) and initiator dicumyl peroxide (DCP). In addition, attempts were also made to understand the fundamentals of impact toughening as well as fracture toughness, and to correlate the results with that of morphological evidences obtained from scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. Varying the ratios of all blend composition, mechanical properties were studied. It was observed that as the rubber fraction increased, the impact property as well as fracture toughness increased. All these tests also showed promising results when PE-g-MA was added, leading to more improvement in all the mechanical properties including increase in crystallite size. It had shown plasticization effect on the compositions, which could be further confirmed by differential scanning calorimetry (DSC) compared to the uncompatibilized ones. But when DCP was added, it behaved like an initiator which directly reacted with the PP matrix, decreasing the molecular weight of the blend with decreasing size of the crystallites.


*Correspondence address, Mail address: Kingshuk Dutta, Department of Polymer Science and Technology, University of Calcutta, Kolkata, India, E-mail:

References

Alexander, L. E.: X-ray Diffraction Methods in Polymer Science, Wiley, New York (1969)Search in Google Scholar

Anastasiadis, S. H., Gancarz, J. and Koberstein, J. K., “Compatibilizing Effet of Block Copolymers Added to the Polymer/Polymer Interface”, Macromolecules, 22, 14491453 (1989) 10.1021/ma00193a074Search in Google Scholar

Anderson, T. L.: Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton (1995)Search in Google Scholar

Ao, Y. H., Sun, S. L., Tan, Z. Y., Zhou, C. and Zhang, H. X., “Compatibilization of PP/EPDM Blends by Grafting Acrylic Acid to Polypropylene and Epoxidizing the Diene in EPDM”, J. Appl. Polym. Sci., 102, 39493954 (2006) 10.1002/app.24257Search in Google Scholar

Babu, R. R., Singha, N. K. and Naskar, K., “Interrelationships of Morphology, Thermal and Mechanical Properties in Uncrosslinked and Dynamically Crosslinked PP/EOC and PP/EPDM Blends”, eXPRESS Polym. Lett., 4, 197209 (2010) 10.3144/expresspolymlett.2010.26Search in Google Scholar

Bouhelal, S., Cagiao, M. E., Benachour, D. and Calleja, F. J. B., “Structure Modification of Isotactic Polypropylene through Chemical Crosslinking: Toughening Mechanism”, J. Appl. Polym. Sci., 103, 29682976 (2007) 10.1002/app.25406Search in Google Scholar

Broggreve, R. J. M., Gaymans, R. J., Schuijer, J. and Housz, J. F. I., “Brittle-Tough Transition in Nylon-Rubber Blends: Effect of Rubber Concentration and Particle Size”, Polymer, 28, 14891496 (1987) 10.1016/0032-3861(87)90348-XSearch in Google Scholar

Brydson, J. A.: Plastic Materials, Butterworth-Heinemann, Oxford (1999)Search in Google Scholar

Cao, J., , Q. F., “Crystalline Structure, Morphology and Mechanical Properties of β-Nucleated Controlled-Rheology Polypropylene Random Copolymers”, Polym. Test., 30, 899906 (2011) 10.1016/j.polymertesting.2011.08.016Search in Google Scholar

Cocco, R. G., Frontini, P. M. and Ipiña, J. E. P., “Threshold Toughness of Polymers in the Ductile to Brittle Transition Region by Different Approaches”, Eng. Fracture Mech., 74, 15611578 (2007) 10.1016/j.engfracmech.2006.09.011Search in Google Scholar

Dasari, A., Rohrmann, J. and Misra, R. D. K., “Microstructural Evolution during Tensile Deformation of Polypropylenes”, Mat. Sci. Eng. A, 351, 200213 (2003) 10.1016/S0921-5093(02)00854-7Search in Google Scholar

Dijkstra, K., ter Laak, J. and Gaymans, R. J., “Nylon-6/Rubber Blends: 6. Notched Tensile Impact Testing of Nylon-6/(Ethylene-Propylene Rubber) Blends”, Polymer, 35, 315322 (1994) 10.1016/0032-3861(94)90696-3Search in Google Scholar

Frassine, R., Rink, M. and Pavan, A., “Size Effects in the Fracture of a Pipe-Grade High Density Polyethylene”, Fatig. Fract. Eng. Mater. Struct., 20, 12171223 (1997) 10.1111/j.1460-2695.1997.tb00325.xSearch in Google Scholar

Grellmann, W., Seidler, S., Jung, K. and Kotter, I., “Crack-Resistance Behavior of Polypropylene Copolymers”, J. Appl. Polym. Sci., 79, 23172325 (2001) 10.1002/1097-4628(20010328)79:13<2317::AID-APP1039>3.0.CO;2-NSearch in Google Scholar

Hodgkinson, J. M., Williams, J. G., “J and Gc Analysis of the Tearing of a Highly Ductile Polymer”, J. Mater. Sci., 16, 5056 (1981) 10.1007/BF00552058Search in Google Scholar

Jiang, W., Liu, C.-H., Wang, Z.-G., An, L.-J., Liang, H.-J., Jiang, B.-Z., Wang, X.-H. and Zhang, H.-X., “Brittle-Tough Transition in PP/EPDM Blends: Effects of Interparticle Distance and Temperature”, Polymer, 39, 32853288 (1998) 10.1016/S0032-3861(97)00627-7Search in Google Scholar

Jiang, W., Tjong, S. C. and Li, R. K. Y., “Brittle-Tough Transition in PP/EPDM Blends: Effects of Interparticle Distance and Tensile Deformation Speed”, Polymer, 41, 34793482 (2000) 10.1016/S0032-3861(99)00747-8Search in Google Scholar

Jiang, W., Yu, D., An, L. and Jiang, B., “Brittle-Ductile Transition of Polypropylene/Ethylene-Propylene-Diene Monomer Blends Induced by Size, Temperature, and Time”, J. Polym. Sci. Polym. Phys., 42, 14331440 (2004) 10.1002/polb.20023Search in Google Scholar

Li, Y.-Y, Hu, S.-W. and Sheng, J., “Evolution of Phase Dimensions and Interfacial Morphology of Polypropylene/Polystyrene Compatibilized Blends during Mixing”, Eur. Polym. J., 43, 561572 (2007) 10.1016/j.eurpolymj.2006.10.018Search in Google Scholar

Lu, M.-L., Chio, K.-C. and Chang, F.-C., “Fracture Behavior of Polypropylene/Ethylene-Diene-Terpolymer Blends: Effect of Temperatures, Notch Radius and Rubber Content”, J. Polym. Res., 3, 7382 (1996) 10.1007/BF01492897Search in Google Scholar

Qin, S.-H., Yu, J., He, M. and Yan, W., “Effects of Interparticle Distance, Temperature and Interfacial Adhesion on Brittle-Ductile Transition for Nylon 6/ABS Blends”, Chinese J. Polym. Sci., 27, 719725 (2009) 10.1142/S0256767909004424Search in Google Scholar

Suwanda, D., Lew, R. and Balke, S. T., “Reactive Extrusion of Polypropylene I: Controlled Degradation”, J. Appl. Polym. Sci., 35, 10191032 (1988) 10.1002/app.1988.070350416Search in Google Scholar

Thomas, S., Chan, C. H., Pothen, L. A., Rajisha, K. R. and Maria, H.: Natural Rubber Materials: Volume 1: Blends and IPNs, RSC Polymer Chemistry Series, Cambridge (2014)10.1039/9781849737647Search in Google Scholar

Utracki, L. A.: Polymer Alloys and Blends, Hanser Publishers, Munich (1989)10.1021/bk-1989-0395.ch001Search in Google Scholar

van der Wal, A., Allan, P. S. and Bevis, M. J., UK Patent 2,170,140 B (1986)Search in Google Scholar

van der Wal, A., Mulder, J. J., Oderkerk, J. and Gaymans, R. J., “Polypropylene-Rubber Blends: 1. The Effect of the Matrix Properties on the Impact Behaviour”, Polymer, 39, 67816787 (1998) 10.1016/S0032-3861(98)00170-0Search in Google Scholar

van der Wal, A., Gaymans, R. J., “Polypropylene-Rubber Blends: 5. Deformation Mechanism during Fracture”, Polymer, 40, 60676075 (1999a) 10.1016/S0032-3861(99)00216-5Search in Google Scholar

van der Wal, A., Nijhof, R. and Gaymans, R. J., “Polypropylene-Rubber Blends: 2. The Effect of the Rubber Content on the Deformation and Impact Behaviour”, Polymer, 40, 60316044 (1999b) 10.1016/S0032-3861(99)00213-XSearch in Google Scholar

Wang, D., Xie, X.-M., “Novel Strategy for Ternary Polymer Blend Compatibilization”, Polymer, 47, 78597863 (2006) 10.1016/j.polymer.2006.09.026Search in Google Scholar

Wong, S. C., Mai, Y. W., “Effect of Rubber Functionality on Microstructures and Fracture Toughness of Impact-Modified Nylon 6,6/Polypropylene Blends: 1. Structure-Property Relationships”, Polymer, 40, 15531566 (1999) 10.1016/S0032-3861(98)00363-2Search in Google Scholar

Wu, S., “Phase Structure and Adhesion in Polymer Blends: A Criterion for Rubber Toughening”, Polymer, 26, 18551863 (1985) 10.1016/0032-3861(85)90015-1Search in Google Scholar

Xanthos, M.: Reactive Extrusion; Principles and Practice, Hanser Publishers, Munich (1992)Search in Google Scholar

Yokoyama, Y., Ricco, T., “Toughening of Polypropylene by Different Elastomeric Systems”, Polymer, 39, 36753681 (1998) 10.1016/S0032-3861(97)10358-5Search in Google Scholar

Zhao, R., Dai, G., “Mechanical Property and Morphology Comparison between the Two Blends Poly(propylene)/Ethylene-Propylene-Diene Monomer Elastomer and Poly(propylene)/Maleic Anhydride-g-Ethylene-Propylene-Diene Monomer”, J. Appl. Polym. Sci., 86, 24862491 (2002) 10.1002/app.11003Search in Google Scholar

Received: 2015-07-08
Accepted: 2015-12-20
Published Online: 2016-05-10
Published in Print: 2016-05-29

© 2016, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Research and Application of Wireless Temperature Measurement Device in High Temperature Enclosed Environment
  5. Influence on Product Quality by pvT-Optimised Processing in Injection Compression Molding
  6. Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming
  7. Influence of Processing Parameters and Composition on the Effective Compatibilization of Polypropylene–Poly(ethylene terephthalate) Blends
  8. Impact Modification of Isotactic Polypropylene with Ethylene-Propylene Diene Monomer Rubber
  9. Impact Behavior of Continuous Biaxial Reinforced Composites Based on Bio-Polyamides and Man-Made Cellulose Fibres
  10. Preparation and Anti-Fouling Property of Acryloylmorpholine-Grafted PVDF Membrane: The Effect of Cross-Linking Agent
  11. Fine Filament Formation Behavior of Polymethylpentene and Polypropylene near Spinneret in Melt Blowing Process
  12. Fracture Toughness of PP/EPDM/Nano-Ternary Composites: The Role of Distribution of Inorganic Particles
  13. CO2 Laser Ablation of Microchannel on PMMA Substrate for Effective Fabrication of Microfluidic Chips
  14. A Novel Micro Wall Slip Model Based on Chain Length and Temperature
  15. Electrical and Mechanical Properties of Antistatic Poly(vinyl chloride) Composites Filled with Silver Plated Hollow Glass Microspheres
  16. Prototype System to Study the Effect of Weld Lines on the Performance of Extruded Profiles
  17. Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies
  18. PPS News
  19. PPS News
  20. Seikei Kakou Abstracts
  21. Seikei-Kakou Abstracts
Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3143/html
Scroll to top button