Startseite Challenges to the Formation of Nano-cells in Foaming Processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Challenges to the Formation of Nano-cells in Foaming Processes

  • Z. Zhu , C. B. Park und J. H. Zong
Veröffentlicht/Copyright: 26. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper uses a finite element analysis to investigate the morphological changes of nano-cells in a polystyrene (PS) – CO2 foaming system. The system was composed of a finite polymer melt with a central cell and eight surrounding cells. The computational domain was discretized using linear triangular elements. The growth and shrinkage of nano-sized cells were tracked using the moving mesh method. The effects of the initial bulk gas concentration, cell size, intercellular distance, and system temperature on cell ripening were examined. The results show that smaller nano-sized cell(s) are doomed to collapse very quickly once they have interacted with larger cell(s), making it difficult to survive. Efforts were made to improve the general understanding of the challenges posed to the formation of nano-cells in foaming processes.


Mail address: Chul B. Park, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8. E-mail:

References

Alavi, S. H., et al., “Process Dynamics of Starch-Based Microcellular Foams Produced by Supercritical Fluid Extrusion. I: Model Development”, Food Res. Int., 36, 309319 (2003a)10.1016/S0963-9969(02)00222-3Suche in Google Scholar

Alavi, S. H., et al., “Process Dynamics of Starch-Based Microcellular Foams Produced by Supercritical Fluid Extrusion. II: Numerical Simulation and Experimental Evaluation”, Food Res. Int., 36, 321330 (2003b)10.1016/S0963-9969(02)00223-5Suche in Google Scholar

Amon, M., Denson, C. D., “A Study of the Dynamics on Foam Growth: Analysis of the Growth of Closely Spaced Spherical Bubbles”, Polym. Eng. Sci., 24, 10261034 (1984)10.1002/pen.760241306Suche in Google Scholar

Aparajith, H. S., et al., “Numerical Simulation of the Dynamics of Multiple Bubble Merger during Pool Boiling under Reduced Gravity”, Multiphas. Sci. Tech., 18, 277304 (2006)10.1615/MultScienTechn.v18.i3.40Suche in Google Scholar

Areerat, S., et al., “Measurement and Prediction of Diffusion Coefficients of Supercritical CO2 in Molten Polymers”, Polym. Eng. Sci., 44, 19151924 (2004)10.1002/pen.20194Suche in Google Scholar

Arefmanesh, A., Advani, S. G., “Nonisothermal Bubble Growth in Polymer Foams”, Polym. Eng. Sci., 35, 252260 (1995)10.1002/pen.760350306Suche in Google Scholar

Boistelle, R., Astier, J. P., “Crystallization Mechanisms in Solution”, J. Cryst. Growth, 90, 1430 (1988)10.1016/0022-0248(88)90294-1Suche in Google Scholar

Bousmina, M., “New Trends in Nanomaterials and Nanotechnology: Facts and Challenges”, The Polymer Processing Society 23rd Annual Meeting, Salvador, Brazil (2007)Suche in Google Scholar

Chung, T. J.: Computational Fluid Dynamics, Part Three, Cambridge University Press, Cambridge, United Kingdom (2002)10.1017/CBO9780511606205Suche in Google Scholar

Coupez, T., “Automatic Remeshing in Three-Dimensional Moving Mesh Finite Element Analysis of Industrial Forming”, in Numerical Methods in Industrial Forming Processes – NUMIFORM95, Shen, S. F., Dawson, P., (Ed.), A. A. Balkema Publishers, p. 407412 (1995)Suche in Google Scholar

Dufour, S., Pelletier, D., “Computations of Multiphase Flows With Surface Tension Using an Adaptive Finite Element Method”, Numer. Heat Transfer, Part A, 40, 335362 (2001)10.1080/104077801753238149Suche in Google Scholar

Fan, J., et al., “A Computer Simulation of the Dynamics of Bubble Growth and Shrinkage during Extrudate Expansion”, J. Food Eng., 23, 337356 (1994)10.1016/0260-8774(94)90058-2Suche in Google Scholar

Fujimoto, Y., et al., “Well-Controlled Biodegradable Nanocomposite Foams: From Microcellular to Nanocellular”, Macromol. Rapid Commun., 24(7), 457461 (2003)10.1002/marc.200390068Suche in Google Scholar

Guo, Q., et al., “A Microcellular Foaming Simulation System with a High-Pressure Drop Rate”, Ind. Eng. Chem. Res., 45, 61536161 (2006)10.1021/ie060105wSuche in Google Scholar

Han, C. D., Yoo, H. J., “Studies on Structural Foaming Processing IV. Bubble Growth during Mold Filling”, Polym. Eng. Sci., 21, 518533 (1981)10.1002/pen.760210903Suche in Google Scholar

Hu, G. H., et al., “Foaming of Polypropylene with Supercritical Carbon Dioxide”, The Polymer Processing Society 22nd Annual Meeting, Yamagata, Japan (2006)Suche in Google Scholar

Hu, G. H., et al., “Nano-Foaming of Isotactic Polypropylene Using Supercritical Carbon Dioxide”, The Polymer Processing Society 23rd Annual Meeting, Salvador, Brazil (2007)Suche in Google Scholar

Joshi, K., et al., “Prediction of Cellular Structure in Free Expansion of Viscoelastic Media”, J. Appl. Polym. Sci., 67, 13531368 (1998)10.1002/(SICI)1097-4628(19980222)67:8<1353::AID-APP2>3.0.CO;2-DSuche in Google Scholar

Kashchiev, D., “Thermodynamically Consistent Description of the Work to Form a Nucleus of Any Size”, J. Chem. Phys., 118, 18371851 (2003)10.1063/1.1531614Suche in Google Scholar

Krause, B., et al., “Open Nanoporous Morphologies from Polymeric Blends by Carbon Dioxide Foaming”, Macromolecules, 35, 17381745 (2002)10.1021/ma011672sSuche in Google Scholar

Kusaka, I., “A Scaling Function of Nucleation Barrier Based on the Diffuse Interface Theory”, J. Chem. Phys., 119, 18081812 (2003)10.1063/1.1580105Suche in Google Scholar

Lee, M., et al., “Measurement and Modeling of PS/Supercritical CO2 Solution Viscosities”, Polym. Eng. Sci., 39, 99109 (1999)10.1002/pen.11400Suche in Google Scholar

Leung, S. N., et al., “Computer Simulation of Bubble-Growth Phenomena in Foaming”, Ind. Eng. Chem. Res., 45, 78237831 (2006)10.1021/ie060295aSuche in Google Scholar

Macosko, C. W.: “Rheology-Principles, Measurements, and Applications”, VCH Publishers, Weinheim (1994)Suche in Google Scholar

Miller, K., Miller, R. N., “Moving Finite Elements, Part I”, SIAM J. Numeri. Anal., 18, 10191032 (1981a)10.1137/0718070Suche in Google Scholar

Miller, K., Miller, R. N., “Moving Finite Elements, Part II”, SIAM J. Numer. Anal., 18, 10331057 (1981b)10.1137/0718071Suche in Google Scholar

Park, H., et al., “Surface Tension Measurement of Polystyrene Melts in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res., 45, 16501658 (2006)10.1021/ie0509084Suche in Google Scholar

Pop-Iliev, R., et al., “Manufacturability of Fine-celled Cellular Structures in Rotational Foam Molding”, J. Cell. Plast., 40, 1325 (2004)10.1177/0021955X04039215Suche in Google Scholar

Ramesh, N. S., et al., “Numerical and Experimental Studies of Bubble Growth during the Microcellular Foaming Process”, Polym. Eng. Sci., 31, 16571664 (1991)10.1002/pen.760312305Suche in Google Scholar

Sato, Y., et al., “Solubility and Diffusion Coefficient of Carbon Dioxide in Poly(vinyl acetate) and Polystyrene”, J. Supercritical Fluids, 19, 187198 (2001)10.1016/S0896-8446(00)00092-9Suche in Google Scholar

Schwartzberg, H. G., et al., “Modelling Deformation and Flow During Vapor-induced Puffing”, J. Food Eng., 25, 329372 (1995)10.1016/0260-8774(94)00015-2Suche in Google Scholar

Shafi, M. A., et al., “Prediction of Cellular Structure in Free Expansion Polymer Foam Processing”, Polym. Eng. Sci., 36, 19501959 (1996)10.1002/pen.10591Suche in Google Scholar

Shen, V. K., Debenedettia, P. G., “Density-functional Study of Homogeneous Bubble Nucleation in the Stretched Lennard-Jones Fluid”, J. Chem. Phys., 114, 41494159 (2001)10.1063/1.1344604Suche in Google Scholar

Street, J. R., et al., “Dynamics of Phase Growth in Viscous, Non-Newtonian Liquids”, Ind. Eng. Chem. Fundam., 10, 5464 (1971)10.1021/i160037a011Suche in Google Scholar

Taki, K., et al., “Visual Observations of Batch and Continuous Foaming Processes”, J. Cell. Plast., 39, 155169 (2003)10.1177/0021955X03039002005Suche in Google Scholar

Tang, T., “Moving Mesh Method for Computational Fluid Dynamics”, Contemporary Mathematics, 383, 141173 (2005)10.1090/conm/383Suche in Google Scholar

Tuladhar, T. R., Mackley, M. R., “Experimental Observations and Modelling Relating to Foaming and Bubble Growth from Pentane Loaded Polystyrene Melts”, Chem. Eng. Sci., 59, 59976014 (2004)10.1016/j.ces.2004.07.054Suche in Google Scholar

Venerus, D. C., Yala, N., “Transport Analysis of Diffusion-Induced Bubble Growth and Collapse in Viscous Liquids”, AIChE J., 43, 29482959 (1997)10.1002/aic.690431108Suche in Google Scholar

Wang, J., et al., “Effect of Die Land Length on Die Pressure during Foam Extrusion – Part I Experimental Observations”, SPE ANTEC Tech. Papers, 1960–1964 (2007)Suche in Google Scholar

Wang, L. J., et al., “Modeling of Bubble Growth Dynamics and Nonisothermal Expansion in Starch-Based Foams during Extrusion”, Adv. Polym. Tech., 24, 2945 (2005)10.1002/adv.20030Suche in Google Scholar

Xu, D., et al., “Fundamental Study of CBA-blown Bubble Growth and Collapse under Atmospheric Pressure”, J. Cell. Plast., 41, 519538 (2005)10.1177/0021955X05059031Suche in Google Scholar

Yang, W. J., Yeh, H. C., “Theoretical Study of Bubble Dynamics in Purely Viscous Fluids”, AIChE J., 12, 927931 (1966)10.1002/aic.690120517Suche in Google Scholar

Yokoyama, H., et al., “Patterned Gold-Nanoparticle Monolayers Assembled on the Oxide of Silicon”, Adv. Mater., 17, 15421545 (2004)10.1002/adma.200400072Suche in Google Scholar

Received: 2007-4-12
Accepted: 2008-3-9
Published Online: 2013-03-26
Published in Print: 2008-07-01

© 2008, Carl Hanser Verlag, Munich

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2050/html
Button zum nach oben scrollen