Microstructural evolution and mechanical properties of thixoformed 7075 aluminum alloy prepared by conventional and new modified SIMA processes
-
Behzad Binesh
Abstract
The microstructural evolution during semi-solid processing and thixoformability of a 7075 alloy prepared by conventional and new modified strain induced melt activation (SIMA) processes were comparatively investigated in this paper. The semi-solid slurries were thixoformed at 600 °C, at which temperature the solid fraction was estimated to be 0.8. The coarsening process of the semi-solid samples was described using Lifshitz–Slyozov–Wagner theory and the effect of pre-deformation on the coarsening kinetics of the solid particles was discussed. The coarsening rate constant of the new modified SIMA sample showed a remarkable decrease compared to that of the conventional SIMA sample. Microstructural and mechanical investigations indicated that the sample with a near-equiaxed microstructure deforms through the plastic deformation of solid grains mechanism. However, the sliding of solid grains and flow of liquid incorporating solid grains mechanisms were dominant in the sample with a globular microstructure. Also, it was observed that the yield and ultimate strengths and hardness of the sample prepared by the new modified SIMA process after thixoforming and T6 heat treatment increased by about 15 %, 10 % and 25 % respectively, compared to those of the conventional SIMA sample.
References
[1] D.Kirkwood: Int. Mater. Rev.39 (1994) 173. 10.1179/095066001225001076Suche in Google Scholar
[2] J.Jiang, Y.Wang, X.Nie, G.Xiao: Mater. Des.96 (2016) 36. 10.1016/j.matdes.2016.02.021Suche in Google Scholar
[3] X.H.Du, E.L.Zhang, B.L.Wu: Int. J. Mater. Res.98 (2007) 235. 10.3139/146.101457Suche in Google Scholar
[4] Z.Fan: Int. Mater. Rev.47 (2002) 49. 10.1179/095066001225001076Suche in Google Scholar
[5] B.Rahimi, H.Khosravi, M.Haddad-Sabzevar: Int. J. Min. Met. Mater.22 (2015) 59. 10.1007/s12613-015-1044-8Suche in Google Scholar
[6] G.Hirt, R.Kopp: Thixoforming, Semi-solid Metal Processing, Wiley-VCH Verlag Gmbh & Co, Germany (2009) 1. 10.1002/9783527623969Suche in Google Scholar
[7] R.Koeune: Semi-solid Constitutive Modeling for the Numerical Simulation of Thixoforming Processes (PhD Thesis), University of Liege (2011).10.1002/9783527632312.ch6Suche in Google Scholar
[8] K.Sukumaran, B.C.Pai, M.Chakraborty: Mater. Sci. Eng. A369 (2004) 275. 10.1016/j.msea.2003.11.036Suche in Google Scholar
[9] R.Haghayeghi, E.J.Zoqui, A.Halvaee, M.Emamy: J. Mater. Process. Technol.3 (2005) 382. 10.1016/j.jmatprotec.2005.04.071Suche in Google Scholar
[10] C.G.Kang, J.W.Bae, B.M.Kim: J. Mater. Process. Technol.187–188 (2007) 344. 10.1016/j.jmatprotec.2006.11.181Suche in Google Scholar
[11] M.Hajihashemi, B.Niroumand, M.Shamanian: Metall. Mater. Trans. B45 (2014) 1804. 10.1007/s11663-014-0111-2Suche in Google Scholar
[12] E.D.Manson-Whitton, I.C.Stone, J.R.Jones, P.S.Grant, B.Cantor: Acta Mater.50 (2002) 2517. 10.1016/S1359-6454(02)00080-0Suche in Google Scholar
[13] M.Baygan, R.Gholamipour, F.Shahri, Int. J. Mater. Res.106 (2015) 235. 10.3139/146.111264Suche in Google Scholar
[14] R.G.Guan, Z.Y.Zhao, H.Zhang, T.Cui, C.S.Lee: Mater. Sci. Eng. A559 (2013) 194. 10.1016/j.msea.2012.08.079Suche in Google Scholar
[15] J.-L.Fu, K.-K.Wang, X.-W.Li, H.-K.Zhang: Int. J. Min. Met. Mater.23 (2016) 1404. 10.1007/s12613-016-1364-3Suche in Google Scholar
[16] M.Karamouz, M.Alizadeh, A.Ahmadi: Int. J. Mater. Res.108 (2017) 1073. 10.3139/146.111558Suche in Google Scholar
[17] M.J.Nayyeri, D.F.Haghshenas: Mater. Sci. Technol.30 (2014) 348. 10.1179/1743284713Y.0000000373Suche in Google Scholar
[18] K.P.Young, C.P.Kyonka, J.A.Courtois: Fine grained metal composition, US Patent 4 415 374, 1983.Suche in Google Scholar
[19] C.T.W.Proni, L.V.Torres, R.Haghayeghi, E.J.Zoqui: Mater. Charact.118 (2016) 252. 10.1016/j.matchar.2016.06.002Suche in Google Scholar
[20] R.Meshkabadi, G.Faraji, A.Javdani, V.Pouyafar: Trans. Nonferrous Met. Soc. China, 26 (2016) 3091. 10.1016/S1003-6326(16)64441-2Suche in Google Scholar
[21] J.Jiang, Y.Wang, and Sh. Luo: Mater. Charact.58 (2007) 190. 10.1016/j.matchar.2006.04.017Suche in Google Scholar
[22] Z.D.Zhao, Q.Chen, Z.J.Tang, C.K.Hu: J. Alloys Compd.497 (2010) 402. 10.1016/j.jallcom.2010.03.088Suche in Google Scholar
[23] G.Yan, Sh. Zhao, Sh. Ma, H.Shou: Mater. Charact.69 (2012) 45. 10.1016/j.matchar.2012.04.005Suche in Google Scholar
[24] Ch.-P.Wang, H.Mei, R.Li, D.Li, L.Wang, J.Liu, Z.Hua, L.Zhao, F.Pen, H.Li: Acta Metall. Sin.26 (2013) 149. 10.1007/s40195-012-0169-2Suche in Google Scholar
[25] Q.Chen, Z.Zhao, Z.H.Zhao, C.H.Hu, D.Shu: J. Alloys Compd.509 (2011) 7303. 10.1016/j.jallcom.2011.04.113Suche in Google Scholar
[26] B.Binesh, M.Aghaie-Khafri: Mater. Des., 95 (2016) 268. 10.1016/j.matdes.2016.01.117Suche in Google Scholar
[27] B.Binesh, M.Aghaie-Khafri: Mater. Res. Express4 (2017) 1. 10.1088/2053-1591/aa8272Suche in Google Scholar
[28] H.V.Atkinson, K.Burke, G.Vaneetveld: Mater. Sci. Eng. A490 (2008) 266. 10.1016/j.msea.2008.01.057Suche in Google Scholar
[29] ASM Handbook, Alloy phase diagrams, Volume 3 ASM International, Materials Park, OH (2004).Suche in Google Scholar
[30] J.Jiang, Y.Wang, X.Nie, G.Xiao: Mater. Des.96 (2016) 36. 10.1016/j.matdes.2016.02.021Suche in Google Scholar
[31] E.Tzimas, A.Zavaliangos: Mater. Sci. Eng. A289 (2000) 228. 10.1016/S0921-5093(00)00908-4Suche in Google Scholar
[32] T.Werz, M.Baumann, U.Wolfram, C.E.Krill: Mater. Charact.90 (2014) 185. 10.1016/j.matchar.2014.01.022Suche in Google Scholar
[33] Q.Q.Zhang, Z.Y.Cao, Y.F.Zhang, G.H.Su, Y.B.Liu: J. Mater. Process. Technol., 184 (2007) 195. 10.1016/j.jmatprotec.2006.11.022Suche in Google Scholar
[34] J.Jiang, Y.Wang, G.Xiao, X.Nie: J. Mater. Process. Technol.238 (2016) 361. 10.1016/j.jmatprotec.2016.06.020Suche in Google Scholar
[35] A.Bolouri, M.Shahmiri, C.G.Kang: J. Mater. Sci.47 (2012) 3544. 10.1007/s10853-011-6200-6Suche in Google Scholar
[36] H.Mohammadi, M.Ketabchi, A.Kalaki: J. Mater. Eng. Perform.20 (2011) 1256. 10.1007/s11665-010-9762-6Suche in Google Scholar
[37] Ch.-P.Wang, Z.-J.Tang, H.-Sh.Mei, L.Wang, R.-Q.Li, D.-F.Li: Rare Metals34 (2015) 710. 10.1007/s12598-013-0123-0Suche in Google Scholar
[38] A.Bolouri, M.Shahmiri, E.N.H.Cheshmeh: Trans. Nonferrous Met. Soc. China20 (2010) 1663. 10.1016/S1003-6326(09)60355-1Suche in Google Scholar
[39] J.FU, Y.Wang, K.Wang, X.Li: Solid State Phenom.256 (2016) 294. 10.4028/www.scientific.net/SSP.256.294Suche in Google Scholar
[40] E.Tzimas, A.Zavaliangos: Acta Mater.47 (1999) 517. 10.1016/S1359-6454(98)00356-5Suche in Google Scholar
[41] J.Wang, Sh. Shang, G.Lu, J.Yu: Int. J. Mater. Res.104 (2013) 255. 10.3139/146.110858Suche in Google Scholar
[42] B.Clarke: Trans. Inst. Chem. Eng. Chem. Eng.45 (1967) 251.10.1021/cen-v045n045.p082Suche in Google Scholar
[43] C.P.Chen, C.Y.A.Tsao: Acta Mater.45 (1997) 1955. 10.1016/S1359-6454(96)00312-6Suche in Google Scholar
[44] H.Lianxi, L.Yuping, W.Erde, Y.Yang: Mater. Sci. Eng. A422 (2006) 327. 10.1016/j.msea.2006.02.014Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 1 – microstructure
- The influence of twinning on plastic constitutive description of a magnesium alloy
- Effect of V and Zr microalloying, and heat treatment on microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy
- Effect of heat treatment on microstructure, hardening and plasticity of a commercial Al–Zn–Mg–Cu alloy
- Microstructural evolution and mechanical properties of thixoformed 7075 aluminum alloy prepared by conventional and new modified SIMA processes
- Hot torsion behavior of SP-700 near beta titanium alloy in single and dual phase regions
- Effect of B4C in Ti-6Al-4V matrix on workability behavior of powder metallurgy composites during cold upsetting
- Synthesis of Ni/YSZ based anode and investigation of effect of PVA as pore-former upon porosity, microstructure and thermal behavior for potential use in solid oxide fuel cells (SOFCs)
- The corrosion behavior of porous Ni–Cr–Fe alloy in 2 mol L−1 alkaline solution
- Short Communications
- The grain growth in alumina compacts sintered under high pressure
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 1 – microstructure
- The influence of twinning on plastic constitutive description of a magnesium alloy
- Effect of V and Zr microalloying, and heat treatment on microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy
- Effect of heat treatment on microstructure, hardening and plasticity of a commercial Al–Zn–Mg–Cu alloy
- Microstructural evolution and mechanical properties of thixoformed 7075 aluminum alloy prepared by conventional and new modified SIMA processes
- Hot torsion behavior of SP-700 near beta titanium alloy in single and dual phase regions
- Effect of B4C in Ti-6Al-4V matrix on workability behavior of powder metallurgy composites during cold upsetting
- Synthesis of Ni/YSZ based anode and investigation of effect of PVA as pore-former upon porosity, microstructure and thermal behavior for potential use in solid oxide fuel cells (SOFCs)
- The corrosion behavior of porous Ni–Cr–Fe alloy in 2 mol L−1 alkaline solution
- Short Communications
- The grain growth in alumina compacts sintered under high pressure
- DGM News
- DGM News