The corrosion behavior of porous Ni–Cr–Fe alloy in 2 mol L−1 alkaline solution
-
Liang Wu
Abstract
Ni–Cr–Fe alloy samples with different porosities were prepared via the Kirkendall effect, with a reactive synthesis of Ni, Cr, and Fe elemental powders. The microstructure, surface morphology and the compositions were analyzed with X-ray diffraction and scanning electron microscopy. The corrosion behavior was explored in a 2 mol L−1 KOH solution using electrochemical methods and an immersion test. The polarization resistance indicated that the free corrosion potential and the lower corrosion current of the porous Ni–Cr–Fe alloy were −0.18528 V and 3.5998 × 10−7 A cm−2. The immersion test showed that after 25 days of immersion, the weight change of porous Ni–Cr–Fe alloy was 0.132 %, which was less than the porous Ni (0.346 %). X-ray photoelectron spectroscopy results revealed the corrosion products of the porous Ni–Cr–Fe alloy and the porous Ni. The corrosion mechanism of the porous Ni–Cr–Fe alloy was discussed.
References
[1] R.M.A.Tehrani, S.A.Ghani: Electrochim. Acta, 70 (2012) 153. 10.1016/j.electacta.2012.03.044Search in Google Scholar
[2] S.M.A.Basir, M.A.Rabah: Hydrometallurgy, 53 (1999) 31. 10.1016/s0304-386x(99)00030-4Search in Google Scholar
[3] R.Y.Wu, G.H.Wu, Z.Xie, Y.G.Liu: J. NEU.26 (2005) 1134. 10.1109/cima.2005.1662305Search in Google Scholar
[4] R.B.Rebuk, P.Crook: Adv. Mater. Processes, 157 (2000) 37. 10.1002/adma.200090123Search in Google Scholar
[5] J.Li, M.Ma, Y.H.Lu, L.Xin: Wear, 346 (2015) 15. 10.1016/j.wear.2015.10.011Search in Google Scholar
[6] Q.J.Peng, J.Hou, K.Sakaguchi, Y.Takeda, T.Shoji: Electrochim. Acta, 56 (2011) 8375. 10.1016/j.electacta.2011.07.032Search in Google Scholar
[7] H.Kim, D.D.Macdonald: Corros. Sci.52 (2010) 1139. 10.1016/j.corsci.2009.12.006Search in Google Scholar
[8] T.Terachi, N.Totsuka, T.Yamada, T.Nakagawa, H.Deguchi, M.Horiuchi, M.Oshitani: J. Nucl. Sci. Technol.40 (2003) 509. 10.3327/jnst.40.509Search in Google Scholar
[9] C.F.C.Neves, G.M.Alvial, M.M.A.M.Schvartzman, L.F.F.Alves, R.G.Paula: Energy Mater.3 (2008) 126. 10.1179/174892408x394245Search in Google Scholar
[10] K.Wang, T.D.XU, C.Shao, C.Yang: J. Iron. Steel Res. Int.18 (2011) 61. 10.1016/s1006-706x(11)60012-5Search in Google Scholar
[11] K.Alvarez, S.K.Hyun, H.Tsuchiya, S.Fujimoto, H.Nakajima: Corros. Sci.50 (2008) 183. 10.1016/j.corsci.2007.06.004Search in Google Scholar
[12] Y.F.Xiao, Y.Liu, Z.Tang, L.Wu, Y.F.Xu, J.W.Qian, Y.H.He: RSC Adv.6 (2016) 51096. 10.1039/c6ra07316fSearch in Google Scholar
[13] H.C.Yu, D.H.Yeon, X.F.Li, K.Thornton: Acta Mater.55 (2007) 6690. 10.1016/j.actamat.2009.07.033Search in Google Scholar
[14] L.Barnard, D.Morgan: J. Nucl. Mater.449 (2014) 225. 10.1016/j.jnucmat.2013.10.022Search in Google Scholar
[15] X.L.Shu, X.C.Li, Y.Yu, Y.N.Liu, T.F.Wu, Y.Shuo, G.H.Lu: Nucl. Instrum. Methods Phys. Res.307 (2013) 37. 10.1016/j.nimb.2012.11.073Search in Google Scholar
[16] L.P.Yu, Y.Jiang, Y.H.He, X.L.Liu, H.B.Zhang: Mater. Chem. Phys.163 (2015) 355. 10.1016/j.matchemphys.2015.07.050Search in Google Scholar
[17] K.V.Rybalka, L.A.Beketaeva, N.G.Bukhan'Ko, A.D.Davydov: Corros. Sci.53 (2011) 630. 10.1016/j.corsci.2010.10.016Search in Google Scholar
[18] C. Op'T.Hoog, N.Birbilis, Y.Estrin: Adv. Eng. Mater.10 (2008) 579. 10.1002/adem.200800046Search in Google Scholar
[19] L.P.Yu, Y.Jiang, Y.H.He, C.T.Liu: J. Alloys Compd.638 (2015) 7. 10.1016/j.jallcom.2015.01.281Search in Google Scholar
[20] C.González-Buch, I.Herraiz-Cardona, E.Ortega, J.García-Antón, V.Pérez-Herranz: Int. J. Hydrogen Energy, 38 (2013) 10157. 10.1016/j.ijhydene.2013.06.016Search in Google Scholar
[21] F.B.Growcock: J. Electrochem. Soc.136 (1989) 2310. 10.1149/1.2097847Search in Google Scholar
[22] R.D.Armstrong, M.Henderson: J. Electroanal. Chem. Interfacial Electrochem.39 (1972) 81. 10.1016/s0022-0728(72)80477-7Search in Google Scholar
[23] L.Chen, A.Lasia: J. Electrochem. Soc.139 (1992) 3458. 10.1149/1.2069099Search in Google Scholar
[24] A.Lasia, A.Rami: J. Appl. Electrochem.294 (1992) 123. 10.1007/bf01092692Search in Google Scholar
[25] L.Birry, A.Lasia: J. Appl. Electrochem.34 (2004) 735. 10.1023/b:jach.0000031161.26544.6aSearch in Google Scholar
[26] N.Pebere, C.Riera, F.Dabosi: Electrochim. Acta, 35 (1990) 555. 10.1016/0013-4686(90)87043-2Search in Google Scholar
[27] C.N.Cao: Electrochim. Acta35 (1990) 837. 10.1016/0013-4686(90)90078-eSearch in Google Scholar
[28] I.Herraiz-Cardona, E.Ortega, V.Pérez-Herranz: Electrochim. Acta, 56 (2011) 1308. 10.1016/j.electacta.2010.10.093Search in Google Scholar
[29] E.Navarro-Flores, Z.W.Chong, S.Omanovic: J. Mol. Catal. A: Chem.226 (2005) 179. 10.1016/j.molcata.2004.10.029Search in Google Scholar
[30] R.Šimpraga, G.Tremiliosi-Filho, S.Y.Qian, B.E.Conway: J. Electroanal. Chem.424 (1997) 141. 10.1016/s0022-0728(96)04907-8Search in Google Scholar
[31] E.B.Castro, M.J.D.Giz, E.R.Gonzalez, J.R.Vilche: Electrochim. Acta, 42 (1997) 951. 10.1016/s0013-4686(96)00272-1Search in Google Scholar
[32] L.Chen, A.Lasia: J. Electrochem. Soc.138 (1992) 3321. 10.1149/1.2085409Search in Google Scholar
[33] B.Losiewicz, A.Budniok, E.Rówiński, E.Lągiewka, A.Lasia: Int. J. Hydrogen Energy, 29 (2004) 145. 10.1023/b:jach.0000021895.52321.35Search in Google Scholar
[34] J.Panek, A.Serek, A.Budniok, E.Rówinski, ELagiewka: Int. J. Hydrogen Energy, 28 (2003) 169. 10.1016/S0360-3199(02)00055-1Search in Google Scholar
[35] J.Kubisztal, A.Budniok, A.Lasia: Int. J. Hydrogen Energy, 32(2007) 1211. 10.1016/j.ijhydene.2006.11.020Search in Google Scholar
[36] L.Wu, Y.Zeng, Y.F.Xiao, Y.H.He: Powder Metall.57 (2014) 387. 10.1179/1743290114y.0000000104Search in Google Scholar
[37] N.Pebere, C.Riera, F.Dabosi: Electrochim. Acta, 25 (1990) 555. 10.1016/0013-4686(90)87043-2Search in Google Scholar
[38] C.N.Cao: Electrochim. Acta, 35 (1990) 831. 10.1016/0013-4686(90)90077-dSearch in Google Scholar
[39] A.Pardo, M.C.Merino, A.E.Coy, F.Viejo, R.Arrabal, S.FeliúJr.: Electrochim. Acta, 53 (2008) 7890. 10.1016/j.electacta.2008.06.001Search in Google Scholar
[40] J.L.Lv, T.X.Liang, W.Chen: Energy, 112 (2016) 67. 10.1016/j.energy.2016.06.060Search in Google Scholar
[41] G.J.Brug, A.L.G.Vandeneeden, M.Sluytersrehbach, J.H.Sluyters: J. Electroanal. Chem.176 (1984) 72. 10.1016/s0022-0728(84)80324-1Search in Google Scholar
[42] A.Lasia, A.Rami: J. Appl. Electrochem.294 (1990) 123. 10.1016/0022-0728(90)87140-fSearch in Google Scholar
[43] P.Los, A.Lasia, H.Menard, L.Brossard: J. Electroanal. Chem.360 (1993) 101. 10.1016/0022-0728(93)87007-iSearch in Google Scholar
[44] L.Vázquez-Gómez, S.Cattarin, P.Guerriero, M.Musiani: J. Electroanal. Chem.634 (2009) 2. 10.1016/j.jelechem.2009.07.009Search in Google Scholar
[45] X.T.Sun, Z.X.Kang, X.L.Zhang, H.J.Jiang, R.F.Guan, X.P.Zhang: Electrochim. Acta, 56 (2011) 6389. 10.1016/j.electacta.2011.05.019Search in Google Scholar
[46] E.Otero, A.Pardo, M.V.Utrilla, F.J.Pérez, C.Merino: Corros. Sci.39 (1997) 453. 10.1016/s0010-938x(97)86097-0Search in Google Scholar
[47] W.A.Badawy, F.M.Al-Kharafi, J.R.Al-Ajmi: J. Appl. Electrochem.30 (2000) 693. 10.1023/a:1003893122201Search in Google Scholar
[48] A.Y.Musa, J.C.Wren: Corros. Sci.109 (2016) 1. 10.1016/j.corsci.2016.03.015Search in Google Scholar
[49] R.E.Hummel, R.J.Smith, E.D.V.Jr.: Corros. Sci.27 (1987) 803. 10.1016/0010-938x(87)90038-2Search in Google Scholar
[50] N.Sato, K.Kudo, M.Miki: J. Jpn. Inst. Met.35 (1971) 1007. 10.2320/jinstmet1952.35.10_1007Search in Google Scholar
[51] B.MacDougall, D.F.Mitchell, M.J.Graham: J. Electrochem. Soc.132 (1985) 2553. 10.1149/1.2113622Search in Google Scholar
[52] N.Hara, K.Sugimoto: J. Jpn. Inst. Met.47 (1983) 31. 10.2320/jinstmet1952.47.1_31Search in Google Scholar
[53] N.Sato, G.Okamoto: J. Electrochem. Soc.110 (1963) 605. 10.1149/1.2425838Search in Google Scholar
[54] R.J.Smith, R.E.Hummel, J.R.Ambrose: Corros. Sci.27 (1987) 815. 10.1016/0010-938x(87)90039-4Search in Google Scholar
[55] X.H.Liu, B.L.Wang, S.Xi: Materials Protection, 46 (2013) 26. 10.1016/j.geoderma.2012.08.011Search in Google Scholar
[56] Q.C.Zhou, N.X.Xu, S.T.Shih: J. Chin. Soc. Prot.10 (1990) 287. 10.1016/0010-938x(91)90099-bSearch in Google Scholar
[57] P.D.Lukovtsev, G.J.Slaidin: Electrochim. Acta, 6 (1962) 17. 10.1016/0013-4686(62)87020-0Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 1 – microstructure
- The influence of twinning on plastic constitutive description of a magnesium alloy
- Effect of V and Zr microalloying, and heat treatment on microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy
- Effect of heat treatment on microstructure, hardening and plasticity of a commercial Al–Zn–Mg–Cu alloy
- Microstructural evolution and mechanical properties of thixoformed 7075 aluminum alloy prepared by conventional and new modified SIMA processes
- Hot torsion behavior of SP-700 near beta titanium alloy in single and dual phase regions
- Effect of B4C in Ti-6Al-4V matrix on workability behavior of powder metallurgy composites during cold upsetting
- Synthesis of Ni/YSZ based anode and investigation of effect of PVA as pore-former upon porosity, microstructure and thermal behavior for potential use in solid oxide fuel cells (SOFCs)
- The corrosion behavior of porous Ni–Cr–Fe alloy in 2 mol L−1 alkaline solution
- Short Communications
- The grain growth in alumina compacts sintered under high pressure
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dendritic structure formation of magnesium alloys for the manipulation of corrosion properties: Part 1 – microstructure
- The influence of twinning on plastic constitutive description of a magnesium alloy
- Effect of V and Zr microalloying, and heat treatment on microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy
- Effect of heat treatment on microstructure, hardening and plasticity of a commercial Al–Zn–Mg–Cu alloy
- Microstructural evolution and mechanical properties of thixoformed 7075 aluminum alloy prepared by conventional and new modified SIMA processes
- Hot torsion behavior of SP-700 near beta titanium alloy in single and dual phase regions
- Effect of B4C in Ti-6Al-4V matrix on workability behavior of powder metallurgy composites during cold upsetting
- Synthesis of Ni/YSZ based anode and investigation of effect of PVA as pore-former upon porosity, microstructure and thermal behavior for potential use in solid oxide fuel cells (SOFCs)
- The corrosion behavior of porous Ni–Cr–Fe alloy in 2 mol L−1 alkaline solution
- Short Communications
- The grain growth in alumina compacts sintered under high pressure
- DGM News
- DGM News