Startseite Preparation of vaterite CaCO3 microspheres by fast precipitation method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of vaterite CaCO3 microspheres by fast precipitation method

  • Zhi Gang Wu , Yang Guo , Jian Wang und Yan Rong Jia
Veröffentlicht/Copyright: 22. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Here we describe a rapid approach for synthesizing pure vaterite calcium carbonate microspheres through a fast precipitation method. The precipitated CaCO3 microspheres were produced in alkaline aqueous media with the addition of sodium citrate at room temperature. The obtained microspheres were investigated with scanning electron microscopy, dynamic light scattering, fourier transform infrared spectroscopy and powder X-ray diffraction. The characterization results reveal that the obtained microspheres are pure vaterite with an average diameter of 5 μm. The possible reason for the formation of vaterite CaCO3 microspheres instead of calcite has also been discussed.


*Correspondence address, Associate Professor Zhi Gang Wu, PhD, School of Science, North University of China, Xueyuan Road 3, Taiyuan, 030051, Shanxi, P. R. China, Tel.: +86-351-3923197, Fax: +86-351-3942724, E-mail: , Web: http://lxy.nuc.edu.cn/gyxy/jzg/jzgyl.htm

References

[1] F.Manoli, S.Koutsopoulos, E.Dalas: J. Cryst. Growth182 (1997) 116. 10.1016/S0022-0248(97)00318-7Suche in Google Scholar

[2] C.Chen, H.F.Han, W.Yang, X.Y.Ren, X.D.Kong: Regener. Biomater.3 (2016) 57. 10.1093/rb/rbv029Suche in Google Scholar PubMed PubMed Central

[3] H.Colfen, L.Qi: Chem. Eur. J.7 (2001) 106. 10.1002/1521-3765(20010105)7:1<106::AID-CHEM106>3.0.CO;2-DSuche in Google Scholar

[4] Y.Y.Zhao, W.Du, L.M.Sun, L.Yu, J.J.Jiao, R.Wang: Colloid Polym. Sci.291 (2013) 2191. 10.1007/s00396-013-2960-7Suche in Google Scholar

[5] E.M.Flaten, M.Seiersten, J.P.Andreassen: J. Cryst. Growth311 (2009) 3533. 10.1016/j.jcrysgro.2009.04.014Suche in Google Scholar

[6] S.P.Bao, X.Y.Chen, Z.Li, B.J.Yang, Y.C.Wu: Cryst. Eng. Comm.13 (2011) 2511. 10.1039/c0ce00794cSuche in Google Scholar

[7] K.Naka, Y.Tanaka, Y.Chujo: Langmuir18 (2002) 3655. 10.1021/la011345dSuche in Google Scholar

[8] P.Kasparov, P.M.Antonietti, H.Cöfen: Colloids Surf. A250 (2004) 153. 10.1016/j.colsurfa.2004.03.033Suche in Google Scholar

[9] Z.Zhang, Y.Xie, X.Xu, H.Pan, R.Tang: J. Cryst. Growth343 (2012) 62. 10.1016/j.jcrysgro.2012.01.025Suche in Google Scholar

[10] A.Sarkar, S.Mahapatra: Cryst. Growth Des.10 (2010) 2129. 10.1021/cg8002959Suche in Google Scholar

[11] J.R.Clarkon, T.J.Price, C.J.Adams: J. Chem. Soc., Dalton Trans.88 (1992) 243. 10.1039/FT9928800243Suche in Google Scholar

[12] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Eur. Ceram. Soc.26 (2006) 843. 10.1016/j.jeurceramsoc.2005.07.050Suche in Google Scholar

[13] M.El-S.I.Saraya, H.H.A.L.Rokbaa: Am. J. Nanomater.4 (2016) 44. 10.12691/ajn-4-2-3Suche in Google Scholar

[14] D.L.Jin, F.Wang, L.H.Yue: Cryst. Res. Technol.46 (2011) 140. 10.1002/crat.201000484Suche in Google Scholar

[15] S.H.Yu, H.Colfen, J.Hartmann: Adv. Funct. Mater.12 (2002) 541. 10.1002/1616-3028(20020805)12:8<541::AID-#6;ADFM541>3.0.CO;2-3Suche in Google Scholar

Received: 2016-10-25
Accepted: 2016-12-19
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111473/pdf
Button zum nach oben scrollen