Startseite Performance evaluation of polysulfone/graphene nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Performance evaluation of polysulfone/graphene nanocomposites

  • Ajith James Jose , Muthukaruppan Alagar , Sam John und Runcy Wilson
Veröffentlicht/Copyright: 31. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present work focuses on the performance and properties of organomodified graphene nanoplatelet filled polysulfone nanocomposites prepared by solution casting. Morphology of the nanocomposites was investigated using atomic force microscopy and transmission electron microscopy. Contact angle measurements showed significantly increased hydrophobicity of the nanocomposites relative to the neat polymer. Mechanical properties of the nanocomposites showed marked improvement at low graphene loadings. Thermal properties measured using thermogravimetric analysis showed that the incorporation of graphene increased the thermal stability and the char yield of the nanocomposites. After immersing the samples in various solvents, the changes in weight and mechanical property were evaluated and the aging performance was found to be improved. The prepared polysulfone nanocomposites with desired hydrophobic, thermal, mechanical and barrier properties are usable for high performance applications.


*Correspondence address, Dr. Ajith James Jose, Assistant Professor, Postgraduate and Research Department of Chemistry, St. Berchmans College (autonomous), Changanassery, Kerala 686101, India, Tel.: +91-984755522, E-mail:

References

[1] H.Kim, A.A.Abdala, W.M.Christopher: Macromolecules43 (2010) 6515. 10.1021/ma100572eSuche in Google Scholar

[2] T.Kuilla, S.Bhadra, D.Yao, N.H.Kim, S.Bose, J.H.Lee: Prog. Polym. Sci.35 (2010) 1350. 10.1016/j.progpolymsci.2010.07.005Suche in Google Scholar

[3] H.Tang, G.J.Ehlert, Y.Lin, H.A.Sodano: Nano Lett.12 (2012) 84. 10.1021/nl203023kSuche in Google Scholar PubMed

[4] J.R.Potts, D.R.Dreyer, C.W.Bielawski, R.S.Ruoff: Polymer52 (2011) 5. 10.1016/j.polymer.2010.11.042Suche in Google Scholar

[5] S.Niyogi, E.Bekyarova, J.Hong, S.Khizroev, C.Berger, W.Heer, R.C.Haddon: J. Phys. Chem. Lett.2 (2011) 2487. 10.1021/jz200426dSuche in Google Scholar

[6] D.Cai, M.Song: J. Mater. Chem.20 (2010) 7906. 10.1039/C0JM00530DSuche in Google Scholar

[7] A.Khalid, T.Laoui, Z.Khan, M.A.Atieh: Desalination367 (2015) 134. 10.1016/j.desal.2015.04.001Suche in Google Scholar

[8] B.M.Ganesh, A.M.Isloor, A.F.Ismail: Desalination313 (2013) 199. 10.1016/j.desal.2012.11.037Suche in Google Scholar

[9] W.SHummers, R.E.Offeman: J. Am. Chem. Soc.80 (1958) 1339. 10.1021/ja01539a017Suche in Google Scholar

[10] K.Zhang, L.L.Zhang, X.S.Zhao, J.Wu: Chem. Mater.22 (2010) 1392. 10.1021/cm902876uSuche in Google Scholar

[11] G.Wang, X.Shen, B.Wang, J.Yao, J.Park: Carbon47 (2009) 1359. 10.1016/j.carbon.2009.01.027Suche in Google Scholar

[12] X.Y.Yuan, L.L.Zou, C.C.Liao, J.W.Dai: Exp. Polym. Lett.6 (2012) 847. 10.3144/expresspolymlett.2012.90Suche in Google Scholar

[13] A.J.Jose, M.Alagar, S.P.Thomas: Mater. Manufact. Process.27 (2012) 247. 10.1080/10426914.2011.585490Suche in Google Scholar

[14] S.Pavlidou, C.D.Papaspyrides: Prog. Polym. Sci.33 (2008) 1119. 10.1016/j.progpolymsci.2008.07.008Suche in Google Scholar

[15] A.J.Jose, M.Alagar: Polym. Comp.32 (2011) 1315. 10.1002/pc.21152Suche in Google Scholar

[16] K.C.Chang, S.T.Chen, H.F.Lin, C.Y.Lin, H.H.Huang, J.M.Yeh, Y.H.Yu: Eur. Polym. J.44 (2008) 13. 10.1016/j.eurpolymj.2007.10.011Suche in Google Scholar

[17] J.Zhang, Z.Qiu: Ind. Eng. Chem. Res.50 (2011) 13885. 10.1021/ie202132mSuche in Google Scholar

[18] A.J.Jose, M.Alagar: Macromol. Symp.320 (2012) 24. 10.1002/masy.201251003Suche in Google Scholar

[19] P.Murugaraj, M.A.Kobaisi, W.M.Yek: J. Appl. Polym. Sci.115 (2010): 1054. 10.1002/app.31083Suche in Google Scholar

[20] J.S.Taurozzi, C.A.Crock: Desalination269 (2011) 111. 10.1016/j.desal.2010.10.049Suche in Google Scholar

[21] M.Lewin: Fire Mater.27 (2003) 1. 10.1002/fam.813Suche in Google Scholar

[22] M.Luo, W.Tang, J.Zhao, C.Pu: J. Mater. Process. Technol.172 (2006) 436. 10.1016/j.jmatprotec.2005.11.004Suche in Google Scholar

[23] A.J.Jose, M.Alagar, F.Chacko: Appl. Clay Sci.71 (2013) 64. 10.1016/j.clay.2012.11.003Suche in Google Scholar

[24] X.Zhao, Q.Zhang, D.Chen: Macromolecules43 (2010) 2357. 10.1021/ma902862uSuche in Google Scholar

[25] H.Fan, L.Wang, K.Zhao, N.Li, Z.Shi, Z.Ge, Z.Jin: Biomacromolecules11 (2010) 2345. 10.1021/bm100470qSuche in Google Scholar PubMed

[26] M.A.Rafiee, J.Rafiee, Z.Wang, H.Song, Z.Z.Yu, N.Koratkar: ACS Nano3 (2009): 3884. 10.1021/nn9010472Suche in Google Scholar PubMed

[27] A.Leszczynska, K.Pielichowski: J. Therm. Anal. Calorim.93 (2008) 677. 10.1007/s10973-008-9128-6Suche in Google Scholar

[28] R.Qiao, L.C.Brinson: Compos. Sci. Technol.69 (2009) 491. 10.1016/j.compscitech.2008.11.022Suche in Google Scholar

[29] S.Nazarenko, P.Maneghetti, B.Julmon, S.Qutubuddin: J. Polym. Sci. Part B45 (2007)733. 10.1002/polb.21181Suche in Google Scholar

Received: 2016-04-05
Accepted: 2016-10-11
Published Online: 2017-01-31
Published in Print: 2017-02-10

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111458/pdf
Button zum nach oben scrollen