Home Performance evaluation of polysulfone/graphene nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Performance evaluation of polysulfone/graphene nanocomposites

  • Ajith James Jose , Muthukaruppan Alagar , Sam John and Runcy Wilson
Published/Copyright: January 31, 2017
Become an author with De Gruyter Brill

Abstract

The present work focuses on the performance and properties of organomodified graphene nanoplatelet filled polysulfone nanocomposites prepared by solution casting. Morphology of the nanocomposites was investigated using atomic force microscopy and transmission electron microscopy. Contact angle measurements showed significantly increased hydrophobicity of the nanocomposites relative to the neat polymer. Mechanical properties of the nanocomposites showed marked improvement at low graphene loadings. Thermal properties measured using thermogravimetric analysis showed that the incorporation of graphene increased the thermal stability and the char yield of the nanocomposites. After immersing the samples in various solvents, the changes in weight and mechanical property were evaluated and the aging performance was found to be improved. The prepared polysulfone nanocomposites with desired hydrophobic, thermal, mechanical and barrier properties are usable for high performance applications.


*Correspondence address, Dr. Ajith James Jose, Assistant Professor, Postgraduate and Research Department of Chemistry, St. Berchmans College (autonomous), Changanassery, Kerala 686101, India, Tel.: +91-984755522, E-mail:

References

[1] H.Kim, A.A.Abdala, W.M.Christopher: Macromolecules43 (2010) 6515. 10.1021/ma100572eSearch in Google Scholar

[2] T.Kuilla, S.Bhadra, D.Yao, N.H.Kim, S.Bose, J.H.Lee: Prog. Polym. Sci.35 (2010) 1350. 10.1016/j.progpolymsci.2010.07.005Search in Google Scholar

[3] H.Tang, G.J.Ehlert, Y.Lin, H.A.Sodano: Nano Lett.12 (2012) 84. 10.1021/nl203023kSearch in Google Scholar PubMed

[4] J.R.Potts, D.R.Dreyer, C.W.Bielawski, R.S.Ruoff: Polymer52 (2011) 5. 10.1016/j.polymer.2010.11.042Search in Google Scholar

[5] S.Niyogi, E.Bekyarova, J.Hong, S.Khizroev, C.Berger, W.Heer, R.C.Haddon: J. Phys. Chem. Lett.2 (2011) 2487. 10.1021/jz200426dSearch in Google Scholar

[6] D.Cai, M.Song: J. Mater. Chem.20 (2010) 7906. 10.1039/C0JM00530DSearch in Google Scholar

[7] A.Khalid, T.Laoui, Z.Khan, M.A.Atieh: Desalination367 (2015) 134. 10.1016/j.desal.2015.04.001Search in Google Scholar

[8] B.M.Ganesh, A.M.Isloor, A.F.Ismail: Desalination313 (2013) 199. 10.1016/j.desal.2012.11.037Search in Google Scholar

[9] W.SHummers, R.E.Offeman: J. Am. Chem. Soc.80 (1958) 1339. 10.1021/ja01539a017Search in Google Scholar

[10] K.Zhang, L.L.Zhang, X.S.Zhao, J.Wu: Chem. Mater.22 (2010) 1392. 10.1021/cm902876uSearch in Google Scholar

[11] G.Wang, X.Shen, B.Wang, J.Yao, J.Park: Carbon47 (2009) 1359. 10.1016/j.carbon.2009.01.027Search in Google Scholar

[12] X.Y.Yuan, L.L.Zou, C.C.Liao, J.W.Dai: Exp. Polym. Lett.6 (2012) 847. 10.3144/expresspolymlett.2012.90Search in Google Scholar

[13] A.J.Jose, M.Alagar, S.P.Thomas: Mater. Manufact. Process.27 (2012) 247. 10.1080/10426914.2011.585490Search in Google Scholar

[14] S.Pavlidou, C.D.Papaspyrides: Prog. Polym. Sci.33 (2008) 1119. 10.1016/j.progpolymsci.2008.07.008Search in Google Scholar

[15] A.J.Jose, M.Alagar: Polym. Comp.32 (2011) 1315. 10.1002/pc.21152Search in Google Scholar

[16] K.C.Chang, S.T.Chen, H.F.Lin, C.Y.Lin, H.H.Huang, J.M.Yeh, Y.H.Yu: Eur. Polym. J.44 (2008) 13. 10.1016/j.eurpolymj.2007.10.011Search in Google Scholar

[17] J.Zhang, Z.Qiu: Ind. Eng. Chem. Res.50 (2011) 13885. 10.1021/ie202132mSearch in Google Scholar

[18] A.J.Jose, M.Alagar: Macromol. Symp.320 (2012) 24. 10.1002/masy.201251003Search in Google Scholar

[19] P.Murugaraj, M.A.Kobaisi, W.M.Yek: J. Appl. Polym. Sci.115 (2010): 1054. 10.1002/app.31083Search in Google Scholar

[20] J.S.Taurozzi, C.A.Crock: Desalination269 (2011) 111. 10.1016/j.desal.2010.10.049Search in Google Scholar

[21] M.Lewin: Fire Mater.27 (2003) 1. 10.1002/fam.813Search in Google Scholar

[22] M.Luo, W.Tang, J.Zhao, C.Pu: J. Mater. Process. Technol.172 (2006) 436. 10.1016/j.jmatprotec.2005.11.004Search in Google Scholar

[23] A.J.Jose, M.Alagar, F.Chacko: Appl. Clay Sci.71 (2013) 64. 10.1016/j.clay.2012.11.003Search in Google Scholar

[24] X.Zhao, Q.Zhang, D.Chen: Macromolecules43 (2010) 2357. 10.1021/ma902862uSearch in Google Scholar

[25] H.Fan, L.Wang, K.Zhao, N.Li, Z.Shi, Z.Ge, Z.Jin: Biomacromolecules11 (2010) 2345. 10.1021/bm100470qSearch in Google Scholar PubMed

[26] M.A.Rafiee, J.Rafiee, Z.Wang, H.Song, Z.Z.Yu, N.Koratkar: ACS Nano3 (2009): 3884. 10.1021/nn9010472Search in Google Scholar PubMed

[27] A.Leszczynska, K.Pielichowski: J. Therm. Anal. Calorim.93 (2008) 677. 10.1007/s10973-008-9128-6Search in Google Scholar

[28] R.Qiao, L.C.Brinson: Compos. Sci. Technol.69 (2009) 491. 10.1016/j.compscitech.2008.11.022Search in Google Scholar

[29] S.Nazarenko, P.Maneghetti, B.Julmon, S.Qutubuddin: J. Polym. Sci. Part B45 (2007)733. 10.1002/polb.21181Search in Google Scholar

Received: 2016-04-05
Accepted: 2016-10-11
Published Online: 2017-01-31
Published in Print: 2017-02-10

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111458/pdf
Scroll to top button