Startseite Technik Dislocationless sliding in a polycluster glass
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dislocationless sliding in a polycluster glass

Dedicated to Prof. Dr.-Ing. Heinrich Wollenberger on the occasion of his 80th birthday
  • Nikolai Lazarev und Alexander Bakai
Veröffentlicht/Copyright: 18. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

At low temperature, T → 0, the yield stress of a perfect crystal is equal to its so called theoretical strength. The yield stress of imperfect crystals is controlled by the stress threshold of dislocation mobility. A non-crystalline solid has neither the ideal structure nor gliding dislocations. Its yield stress depends on the distribution of local critical stresses attributed to each atomic site at which the local inelastic deformation occurs. We describe the exactly solvable model of planar layer strength and sliding with an arbitrary homogeneous distribution of local critical stresses. The kinetics of thermally-activated creep of the sliding layer is described. The sliding activation volume scales with the applied external stress as ∼ωe, where β < 1.

The proposed model accounts for mechanisms of the low temperature deformation of polycluster metallic glasses, since intercluster boundaries of a polycluster metallic glass are natural sliding layers of the described type. We also discuss applicability of the model to the low temperature plastic deformation of nano-crystalline materials.


Correspondence address, Dr. Nikolai Lazarev, NSC Kharkov Institute of Physics and Technology, Institute for Theoretical Physics, Akademichna str. 1, 61108 Kharkov, Ukraine, Tel.: +38573 356203, Fax: +38573 352683, E-mail:

References

[1] J.Frenkel: Z. Phys. 37 (1926) 572. DOI: 10.1007/BF01397292Suche in Google Scholar

[2] J.P.Hirth, J.Lothe: Theory of Dislocations. New York, Wiley, 1982.Suche in Google Scholar

[3] R.Peierls: Proc. Phys. Soc. London52 (1940) 34. DOI: 10.1088/0959-5309/52/1/305Suche in Google Scholar

[4] CA.Schuh, T.C.Hufnagel, U.Ramamurty: Acta Mater.55 (2007) 4067. DOI: 10.1016/j.actamat.2007.01.052Suche in Google Scholar

[5] M.Born, K.Huang: Dynamical Theory of Crystal Lattices. Oxford University Press, 1962.Suche in Google Scholar

[6] F.H.Stillinger: Science,267 (1995) 1935. PMid:17770102;DOI: 10.1126/science.267.5206.1935Suche in Google Scholar

[7] A.S.Argon: Acta Metal. 27 (1979) 47. DOI: 10.1016/0001-6160(79)90055-5Suche in Google Scholar

[8] A.S.Argon: J. Phys. Chem. Solids,43 (1982) 945. DOI: 10.1016/0022-3697(82)90111-1Suche in Google Scholar

[9] A.S.Argon, L.T.Shi: Acta Metal. 31 (1983) 499. DOI: 10.1016/0001-6160(83)90038-XSuche in Google Scholar

[10] M.L.Falk, J.S.Langer, Phys. Rev. E57 (1998) 7192. DOI: 10.1103/PhysRevE.57.7192Suche in Google Scholar

[11] J.S.Langer, L.Pechenik: Phys. Rev. E68 (2003) 061504. DOI: 10.1103/PhysRevE.68.061507Suche in Google Scholar PubMed

[12] J.S.Langer: Phys. Rev. E70 (2004) 041502. DOI: 10.1103/PhysRevE.70.041502Suche in Google Scholar PubMed

[13] J.S.Langer: Scripta Mater. 54 (2006) 375. DOI: 10.1016/j.scriptamat.2005.10.005Suche in Google Scholar

[14] M.CohenD.Turnbull: J. Chem. Phys. 31 (1959) 1164. DOI: 10.1063/1.1730566Suche in Google Scholar

[15] F.Spaepen: Acta Metall. 25 (1977) 407. DOI: 10.1016/0001-6160(77)90232-2Suche in Google Scholar

[16] P.S.Steif, F.Spaepen, J.W.Hutchinson: Acta Metall. 30 (1982) 447. DOI: 10.1016/0001-6160(82)90225-5Suche in Google Scholar

[17] W.L.Johnson, K.Samwer: Phys. Rev. Lett. 95 (2005) 195501. DOI: 10.1103/PhysRevLett.95.195501Suche in Google Scholar PubMed

[18] M.Zink, K.Samwer, W.L.Johnson, S.G.Mayr: Phys. Rev. B73 (2006) 172203. DOI: 10.1103/PhysRevB.73.172203Suche in Google Scholar

[19] A.S.Bakai, A.P.Shpak, N.Wanderka, S.Kotrechko, T.I.Mazilova, I.M.Mikhailovskij: J. Non-Cryst. Sol. 356 (2010) 1310.10.1016/j.jnoncrysol.2010.03.009Suche in Google Scholar

[20] J.R.Greer, D.Jang, J.-Y.Kim, M.J.Burek: Adv. Funct. Mater. 19 (2009) 1.10.1002/adfm.200900854Suche in Google Scholar

[21] A.S.Bakai: Polycluster amorphous solids. Energoatomizdat, Moscow1987 (in Russian).Suche in Google Scholar

[22] AS.Bakai: Z. Phys. Chem. Neue Folge158 (1988), 201.10.1524/zpch.1988.158.Part_2.201Suche in Google Scholar

[23] A.S.Bakai: The polycluster concept of amorphous solids, In: H.Beck, H.-J.Guntherodt (Eds.), Glassy Metals III, Springer, Heidelberg, 1994, p. 209. DOI: 10.1007/BFb0109245Suche in Google Scholar

[24] P.H.Gaskell: Glassy Metals II, Topics in Applied Physics 53, Springer, Berlin, 1983; H. Gaskell: J. de Physique, 46 C 8 (1985) C8-3.10.1051/jphyscol:1985801Suche in Google Scholar

[25] A.S.Bakai, V.V.Kulko, I.M.Mikhailovskij: J. Non-Cryst. Solids182 (1995) 135. DOI: 10.1016/0022-3093(94)00506-0Suche in Google Scholar

[26] U.Geyer, U.von Hsen, H.Kopf: J. Appl. Phys. 83 (1998) 3065. DOI: 10.1063/1.367061Suche in Google Scholar

[27] C.C.Koch, I.A.Ovid'ko, S.Seal, S.Veprek: Structural Nanocrys-talline Materials: Fundamentals and Applications. Cambridge University Press, Cambridge2007. DOI: 10.1017/CBO9780511618840Suche in Google Scholar

[28] I.M.Lifshitz: Sov. Phys. JETP17 (1963) 909.Suche in Google Scholar

[29] A.S.Argon, in: R.W.Cahn, P.Haasen (Eds.), Physical Metallurgy Vol. 3, Elsevier Science BV1996, p. 1877.Suche in Google Scholar

[30] KeTing-Sui: Phys. Rev. 71 (1947) 533. DOI: 10.1103/PhysRev.71.533Suche in Google Scholar

[31] A.P.Sutton, R.W.Balluffi: Interfaces in crystalline materials, Clarendon Press, Oxford, 1995.Suche in Google Scholar

[32] N.F.Mott, Proc. Phys. Soc. 60 (1948) 391. DOI: 10.1088/0959-5309/60/4/309Suche in Google Scholar

[33] A.S.Bakai, H.Hermann, N.P.Lazarev: Phil. Mag. A82 (2002) 1521.DOI: 10.1080/01418610208240035Suche in Google Scholar

[34] N.Lazarev, A.Bakai: cond-mat/arXiv:1106.6249vl (2011)Suche in Google Scholar

[35] A.V.Granato, D.M.Joncich, V.A.Khonik: Appl. Phys. Lett. 97 (2010) 171911. DOI: 10.1063/1.3507897Suche in Google Scholar

[36] J.W.Cahn, F.R.N.Nabarro: Phil. Mag. A81 (2001) 1409. DOI: 10.1080/01418610108214448Suche in Google Scholar

[37] B.N.J.Persson, O.Albohr, U.Tartaglino, A.I.Volokitin, E.Tosatti: J. Phys.: Cond. Mat. 17 (2005) Rl. PMid:21690662; DOI: 10.1088/0953-8984/17/l/R01Suche in Google Scholar

[38] D.Wolf, V.Yamakov, S.R.Phillpot, A.Mukherjee, H.Gleiter: Acta Mater. 53 (2005) 1. DOI: 10.1016/j.actamat.2004.08.045Suche in Google Scholar

Received: 2011-2-15
Accepted: 2011-7-18
Published Online: 2013-05-18
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. Heinrich Wollenberger — 80 years
  5. Original Contributions
  6. Atom probe tomography: from physical metallurgy towards microelectronics
  7. Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation
  8. TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steel
  9. Order – disorder transformation in Ni – V alloys under electron irradiation
  10. Materials issues of the SINQ high-power spallation target
  11. The origin and development of the P{011}<111> orientation during recrystallization of particle-containing alloys
  12. Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel
  13. Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures
  14. The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME21
  15. Analysing SANS data to determine magnetisation reversal processes in composite perpendicular magnetic recording media using TEM images
  16. Dislocationless sliding in a polycluster glass
  17. Evolution of transformation plasticity during bainitic transformation
  18. Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments
  19. Synthesis of carbon nanotubes by fine Ni particles in Ni3Al foam
  20. Fabrication of dielectric thin films by sputtering deposition at different pressures with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target
  21. DGM News
  22. DGM News
Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110569/html
Button zum nach oben scrollen