Home Technology Evolution of transformation plasticity during bainitic transformation
Article
Licensed
Unlicensed Requires Authentication

Evolution of transformation plasticity during bainitic transformation

  • Hans-Gerd Lambers , Sergej Tschumak , Hans Jürgen Maier and Demircan Canadinc
Published/Copyright: May 18, 2013

Abstract

The influences of prior austenitization treatment and the state of applied stresses on the evolution of transformation plasticity strains during isothermal bainitic phase transformation and the resulting microstructures were examined. The key finding is that, upon pre-straining, the amount of transformation plasticity strain under superimposed elastic stresses is dictated by both the prior austenite grain size and the (0.01 % offset) yield strength of the supercooled austenite. Furthermore, the superimposition of internal stresses present due to pre-straining and externally applied stresses results in transformation plasticity strains similar to those obtained when a permanent stress equivalent to the 0.01 % offset yield strength of the supercooled austenite is applied. Another important result is that lower transformation plasticity strains were observed when decreasing the austenite grain size, which is accompanied by an increase in grain boundary area per volume, hindering the growth of preferred variants. Overall, the results clearly lay out the influence of austenite grain size and the particular 0.01 % offset yield strength of the supercooled austenite in limiting the transformation plasticity strains, which has to be incorporated into current models involving bainitic phase transformations.


Correspondence address, Hans-Gerd Lambers, Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47 – 49, D-33098 Paderborn, Germany, Tel.: +49 525 160 4228, Fax: +49 525 160 3854, E-mail:

References

[1] K.Steinhoff, U.Weidig, U.B.Scholtes, W.Zinn: Steel Res. Int.76 (2005) 154.Search in Google Scholar

[2] A.Rose, L.Rademacher: Stahl und Eisen77 (1957) 409.Search in Google Scholar

[3] H.-G.Lambers, S.Tschumak, H.J.Maier, D.Canadinc: Metall. Mater. Trans A40 (2009) 1355.10.1007/s11661-009-9827-zSearch in Google Scholar

[4] M.Umemoto, W.S.Owen: Metall. Transactions, 5 (1974) 2041.10.1007/BF02644497Search in Google Scholar

[5] S.-J.Lee, Y.-K.Lee: Materials Science Forum475–479 (2005) 3169.10.4028/www.scientific.net/MSF.475-479.3169Search in Google Scholar

[6] M.R.Meyerson, S.J.Rosenberg: Trans. ASM46 (1954) 1225.Search in Google Scholar

[7] A.Garcia-Junceda, C.Capdevila, F.G.Caballero, C.Garcia de Andres: Scripta Mater.58 (2008) 134.10.1016/j.scriptamat.2007.09.017Search in Google Scholar

[8] H.-Y.Yang, H.K.D.H.Bhadeshia: Scripta Mater.60 (2009) 493.10.1016/j.scriptamat.2008.11.043Search in Google Scholar

[9] G.I.Rees, H.K.D.H.Bhadeshia: Mater. Sci. Technol.8 (1992) 985.10.1179/026708392790409842Search in Google Scholar

[10] P.J.Jacques: J. Phys. IV, 112 (2003) 297.10.1051/jp4:2003887Search in Google Scholar

[11] A.Matuzaki, H.K.D.H.Bhadeshia: Mater. Sci. Technol.15 (1999) 518.10.1179/026708399101506210Search in Google Scholar

[12] H.Bungardt, H.Preisendanz, H.Brandis: Archiv für das Eisenhüttenwesen32 (1961) 261.Search in Google Scholar

[13] H.-G.Lambers, S.Tschumak, H.J.Maier, D.Canadinc: Mater Sci. Eng. A527 (2010) 625.10.1016/j.msea.2009.08.038Search in Google Scholar

[14] H.-G.Lambers, S.Tschumak, H.J.Maier: Int. J. Micr. Mater. Prop.5 (2010) 328.Search in Google Scholar

[15] U.Ahrens, G.Besserdich, H.J.Maier: HTM57 (2002) 99.Search in Google Scholar

[16] A.Matsuzaki, H.K.D.H.Bhadeshia, H.Harada: Acta Metall. Mater.42 (1994) 1081.10.1016/0956-7151(94)90125-2Search in Google Scholar

[17] P.H.Shipway, H.K.D.H.Bhadeshia: Mater. Sci. Eng. A201 (1995) 143.10.1016/0921-5093(95)09769-4Search in Google Scholar

[18] T.J.Su, M.Veaux, E.Aeby-Gautier, S.Denis, V.Brien, P.Archambault: J. Phys. IV112 (2003) 293.10.1051/jp4:2003886Search in Google Scholar

[19] U.Ahrens, H.J.Maier, A.E.L.M.Maksoud: J. Phys. IV120 (2004) 615.Search in Google Scholar

[20] J.R.Patel, M.Cohen: Acta Metall., 1 (1953) 531.10.1016/0001-6160(53)90083-2Search in Google Scholar

[21] H.K.D.H.Bhadeshi, in: H.J.McQueen, E.V.Konopleva, N.D.Ryan (Eds.), Hot Workability of Steels and Light Alloys-Composites, Canadian Institute of Mining, Minearals and Petroleum, Montreal, Canada (1996) 543.Search in Google Scholar

[22] R.H.Larn, J.R.Yang: Mater. Sci. Eng. A278 (2000) 278.10.1016/S0921-5093(99)00597-3Search in Google Scholar

[23] U.Ahrens, G.Besserdich, H.J.Maier: HTM55 (2000) 329.Search in Google Scholar

[24] L.Taleb, S.Petit-Grostabussiat: J. Phys. IV12 (2002) Pr11-187.10.1051/jp4:20020492Search in Google Scholar

[25] S.Grostabussiat, L.Taleb, J.F.Jullien, F.Sidoroff: J. Phys. IV11 (2001) Pr4-173.10.1051/jp4:2001422Search in Google Scholar

[26] J.-C.Videau, G.Cailletaud, A.Pineau: J. Phys. IV6 (1996) C1465.10.1051/jp4:1996145Search in Google Scholar

[27] G.W.Greenwood, R.H.Johnson: Proc. Roy. Soc. London. Series A283 (1965) 403.10.1098/rspa.1965.0029Search in Google Scholar

[28] C.L.Magee: Transformation kinetics, microplasticity and aging of martensite in Fe-31Ni, Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, USA, 1966.Search in Google Scholar

[29] M.Dalgic, A.Irretier, H.-W.Zoch, G.Löwisch: Int. J. Micro. Mater. Prop.3 (2008) 49.Search in Google Scholar

[30] F.Marketz, F.D.Fischer, K.Tanaka: J. Phys. IV6 (1996) C1445.10.1051/jp4:1996143Search in Google Scholar

[31] L.Taleb, F.A.Sidoroff: Int. J. Plasticity19 (2003) 1821.10.1016/S0749-6419(03)00020-2Search in Google Scholar

[32] L.Taleb, N.Cavallo, F.Waeckel: Int. J. Plasticity17 (2001) 1.10.1016/S0749-6419(99)00090-XSearch in Google Scholar

[33] S.Kundu, K.Hase, H.K.D.H.Bhadeshia: Proc. Roy. Soc. A463 (2007) 2309.10.1098/rspa.2007.1881Search in Google Scholar

[34] M.Veaux, J.C.Louin, J.P.Houin, S.Denis, P.Archambault: J. Phys. IV11 (2001) Pr4-181.10.1051/jp4:2001423Search in Google Scholar

[35] A.A.Shirzadi, H.Abreu, L.Pocock, D.Klobcar, P.J.Withers, H.K.D.H.Bhadeshia: Int. J. Mat. Res.100 (2009) 40.10.3139/146.101789Search in Google Scholar

[36] Atlas zur Wärmebehandlung der Stähle, Verlag Stahleisen, Düsseldorf1961.Search in Google Scholar

[37] German Standard DIN EN 10002_5, Standard for high temperature tensile tests.Search in Google Scholar

[38] H.K.D.H.Bhadeshia: Bainite in steels, 2nd edition. Institute of Materials, London, 2001.Search in Google Scholar

[39] H.-G.Lambers: Unpublished data.Search in Google Scholar

[40] S.Chatterjee, H.-S.Wang, J.R.Yang, H.K.D.H.Bhadeshia: Mat. Sci. Technology22 (2006) 641.10.1179/174328406X86128Search in Google Scholar

[41] U.Ahrens: Beanspruchungsabhängiges Umwandlungsverhalten und Umwandlungsplastizität niedrig legierter Stähle mit unterschiedlich hohen Kohlenstoffgehalten, Dissertation, Paderborn, 2003.Search in Google Scholar

[42] M.Dalgic, A.Irretier, H.-W.Zoch: HTM62 (2007) 179.Search in Google Scholar

[43] P.S.Bate, W.B.Hutchinson: J. Appl. Cryst.41 (2008) 210.10.1107/S0021889807055458Search in Google Scholar

Received: 2010-10-28
Accepted: 2011-7-1
Published Online: 2013-05-18
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. Heinrich Wollenberger — 80 years
  5. Original Contributions
  6. Atom probe tomography: from physical metallurgy towards microelectronics
  7. Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation
  8. TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steel
  9. Order – disorder transformation in Ni – V alloys under electron irradiation
  10. Materials issues of the SINQ high-power spallation target
  11. The origin and development of the P{011}<111> orientation during recrystallization of particle-containing alloys
  12. Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel
  13. Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures
  14. The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME21
  15. Analysing SANS data to determine magnetisation reversal processes in composite perpendicular magnetic recording media using TEM images
  16. Dislocationless sliding in a polycluster glass
  17. Evolution of transformation plasticity during bainitic transformation
  18. Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments
  19. Synthesis of carbon nanotubes by fine Ni particles in Ni3Al foam
  20. Fabrication of dielectric thin films by sputtering deposition at different pressures with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target
  21. DGM News
  22. DGM News
Downloaded on 17.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110558/html
Scroll to top button