Startseite Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)

  • Paul Diekhoff , Jonas Hensel , Thomas Nitschke-Pagel und Klaus Dilger
Veröffentlicht/Copyright: 15. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Kurzfassung

Bei der Herstellung von Stahltragwerken nach DIN EN 1090 sowie bei der allgemeinen Materialprüfung ist die Messung der Härte Bestandteil der normgerechten Bauteilprüfung. Dabei wird zumeist die konventionelle stationäre Vickershärteprüfung gefordert. Beispielsweise werden bei der Erzeugung von thermischen Schnittkanten obere Grenzwerte für die Härte vorgeschrieben, die es folglich zu überprüfen gilt. Die Ermittlung der tatsächlich vorliegenden Härte an derartigen technischen Oberflächen stellt sich in der Praxis jedoch als schwierig dar, da die hohen Härten verfahrensbedingt nur in dünnen Schichten vorliegen und die zugänglichen Oberflächen der Schnittkanten Schneidriefen aufweisen. Die umständliche Verfahrensprüfung und die normgerechte Härtemessung an metallografischen Schliffen sind selbstverständlich möglich, aufgrund des hohen experimentellen Aufwands jedoch nicht immer praxistauglich. Im Zusammenhang mit der rechtlichen Produkthaftung, die für jedes gefertigte Bauteil gewährt werden muss, besteht unmittelbarer Bedarf an einem Verfahren zur verlässlichen Ermittlung der Härte, auch an nicht normgerecht vorbereiteten Oberflächen.

Abstract

The manufacturing of steel constructions according to EN 1090 includes measurement of hardness as a main part of standardized component testing. This usually requires the conventional stationary Vickers hardness method. For example, in the production of thermal cut edges, upper limits of the hardness exist, which have to be met. The determination of the actual hardness of such technical surfaces is difficult, because high hardness occurs only in thin layers and the cut edges are rough. Due to the high experimental effort, standardized hardness measurement on the cross section is not always practical. Regarding product liability, there is an immediate need for a reliable method to measure hardness, even on technical surfaces. This article is concerned with investigations on reliable hardness measurements using in-situ UCI method on thermal cut edges. For that purpose, measurements were carried out on different samples with different test loads and preparation steps in order to compare them with conventional Vickers hardness measurements. No influence of the hardness test method was shown if the minimum mass of the samples according to DIN 50159 or ASTM A 1038 is observed. In addition, the investigations on the technical surfaces revealed that the accuracy of the hardness measurements is determined by the roughness and the test load. The reproducibility increased after slight grinding of the surface and by using a higher test load (HV10). However, the absolute maximum hardness values at the cut edges are underestimated compared to the conventional Vickers measurements on the cross section, due to the fact that the maximum hardness value is not always located on the surface.


*Correspondence Address, Paul Diekhoff, Institut für Füge- und Schweißtechnik, TU Braunschweig, Langer Kamp 8, 38106 Braunschweig, Germany, E-Mail:

Paul Diekhoff, born in 1989, studied Mechanical Engineering at Technical University Braunschweig in Germany and at Linköping University in Sweden. In 2015, he completed his Master with a major in Production and System Technology. Since 2016, he has worked as a scientific employee and PhD student at the department of strength and component behaviour at the Institute of Joining and Welding at the Technical University Braunschweig. He currently works on measures to optimize the fatigue strength of components.

Dr.-Ing. Jonas Hensel, born in 1983, completed a dual degree in 2009: diploma in civil engineering at the Technical University of Braunschweig, Germany and Master's degree in ocean engineering at the University of Rhode Island in Kingston, USA. Subsequently, he worked as a scientific employee at the Institute of Joining and Welding at Technical University Braunschweig in the department of fatigue behaviour of welded components and completed his PhD there. Since 2017, he has been Head of the department for arc and beam welding technology at the same institute.

Dr.-Ing. Thomas Nitschke-Pagel, born in 1958, completed his diploma degree in Mechanical Engineering at the University of Kassel, Germany. He worked as a scientific employee at the Institute of Materials Technology of the University of Kassel and at the Institute of Joining and Welding of the Technical University of Braunschweig, where he completed his PhD. Currently he is Head of the department of strength and component behaviour at the same institute.

Prof. Dr.-Ing. Prof. h.c. Klaus Dilger, born in 1962, completed his diploma degree in production technology and his PhD in welding technology, both at the Technical University of Munich, Germany. Since 2002, he has been Head of the Institute for Joining and Welding at the Technical University of Braunschweig. He is also a member of the working group “Adhesive Technology” at the German Institute for Structural Engineering, member of the board at the research centre for materials technology in Clausthal, and chairman of the board at the Open Hybrid LabFactory in Wolfsbur, Germany.


Literatur

1 DIN EN 1090-2: Ausführung von Stahltragwerken und Aluminiumtragwerken – Teil 2: Technische Regeln für die Ausführung von Stahltragwerken (2011)Suche in Google Scholar

2 V.Läpple, B.Drube, G.Wittke, C.Kammer: Werkstofftechnik Maschinenbau – Theoretische Grundlagen und praktische Anwendungen, 4. Auflage, Verlag Europa-Lehrmittel, Haan-Gruiten, 2013Suche in Google Scholar

3 J.Ruge, H.Wohlfahrt: Technologie der Werkstoffe – Herstellung, Verarbeitung. Einsatz, 8. Auflage, Friedr. Vieweg & Sohn Verlag, Wiesbaden (2007)Suche in Google Scholar

4 DIN EN ISO 6507: Metallische Werkstoffe – Härteprüfung nach Vickers – Teil 1: PrüfverfahrenSuche in Google Scholar

5 DIN 50159-1: Metallische Werkstoffe – Härteprüfung nach dem UCI – Verfahren – Teil 1: Prüfverfahren (2008)Suche in Google Scholar

6 M.Tietze: Von der klassischen Härtemessung im Labor zur Lösung komplexer Aufgaben im Feld – Möglichkeiten und Grenzen des UCI-Verfahrens. DACH-Jahrestagung, Salzburg (2015)Suche in Google Scholar

7 ASTM A 1038: Standard Test Method for Portable Hardness Testing by the Ultrasonic Impedance Method, ASTM internationalSuche in Google Scholar

8 J.Berg, N.Stanghöner, A.Gorbachov: Influence of thermal cutting methods on the hardness of free edge regions of structural steel, Nordic Steel Construction Conference, Oslo (2012)Suche in Google Scholar

9 J.Heyer, J.Lechtenböhmer, J. M.Holthaus, C.Rothbauer: Qualifizierung von thermischen Schneidprozessen nach DIN EN 1090-2: Entwicklung der Prüfverfahren und Prozessoptimierung gehen Hand in Hand. DVS-Berichte Band296 (2013)Suche in Google Scholar

Online erschienen: 2018-11-15
Erschienen im Druck: 2018-09-30

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111220/html
Button zum nach oben scrollen