CFD simulation of particulate flow in a spiral concentrator
-
Gamal M. A. Mahran
, Mohamed A. Doheim , Mohamed H. Abu-Ali und Ahmed F. Abdel
Abstract
A spiral concentrator is a gravity concentration device. It was invented by Humphreys in 1941. Firstly, it was designed and developed based on experience and by extensive testing of prototypes and modifications. The main objective of the present study is the simulation of the particulate flow of more realistic solid concentrations (i. e., 15 wt.-% solids) in a spiral separator. This study is based on the Eulerian approach and renormalization group k-∊ turbulence modeling. The results focus on particulate flow characteristics such as velocity, distribution and concentration of particulates on the spiral trough. The predicted results were compared with the experimental results in case of LD9 coal spiral. Comparisons between numerical and measured data showed good agreement.
Kurzfassung
Bei einem Spiralkonzentrator handelt es sich um eine gravimetrische Konzentrationseinrichtung. Diese wurde durch Humphreys bereits 1941 erfunden. Sie wurde zunächst basierend auf Erfahrungen und durch Prüfen von Prototypen und deren Modifikation designed und entwickelt. Das Hauptziel der diesem Beitrag zugrunde liegenden Studie besteht darin, den Partikelfluss einer realistischeren Konzentration an Festbestandteilen, nämlich 15 wt.-%, in einem Spiralkonzentrator zu simulieren. Die Studie basiert auf einem Ansatz nach Euler und der Modellierung der Renormalisationsgruppe einer k-∊ Turbulenz. Die Ergebnisse konzentrieren sich auf die Partikelflusseigenschaften wie Geschwindigkeit sowie Konzentration und Verteilung der Partikel auf dem Schneckentrog. Die vorhergesagten Ergebnisse wurden mit experimentellen Ergebnissen für den Fall einer LD9 Kohlespirale verglichen. Der Vergleich zwischen den numerischen und experimentellen Werten zeigte eine gute Übereinstimmung.
References
1 B. K.Mishra, A.Tripathy: A preliminary study of particle separation in spiral concentrators using DEM, International Journal of Mineral Processing94 (2010), No. 3–4, pp. 192–19510.1016/j.minpro.2009.12.005Suche in Google Scholar
2 Y. M.Stokes, S. K.Wilson, B. R.Duffy: Thin-film flow in open helically-wound channels, Proc. of the 15th Australasian Fluid Mechanics Conference, University of Sydney, Sydney, Australia (2004), Paper AFMC00187Suche in Google Scholar
3 C. R.Burch: Helicoid performance and fine cassiterite – Contributed remarks, Trans. Inst. Min. Metall.71 (1962), pp. 406–415Suche in Google Scholar
4 J. W.Wang, J. R. G.Andrews: Numerical simulations of liquid flow on spiral concentrators, J. Minerals Engineering7 (1994), No. 11, pp. 1363–138510.1016/0892-6875(94)00076-XSuche in Google Scholar
5 T.Jancar, C. A. J.Fletcher, P. N.Holtham, J. A.Reizes: Computational and experimental investigation of spiral separator hydrodynamics, Proc. of the 19th Int. Mineral Processing Congress, San Francisco, USA (1995), pp. 147–151Suche in Google Scholar
6 B. W.Matthews, P.Holtham, C. A. J.Fletcher, K.Golab, A. C.Partridge: Computational and experimental investigation of spiral concentrator flows, Proc. of Coal 1998: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, Australia (1998), pp. 415–421Suche in Google Scholar
7 B. W.Matthews, C. A. J.Fletcher, A. C.Partridge: Computational simulation of fluid and dilute particulate flows on spiral concentrators, Applied Mathematical Modelling22 (1998), No. 12, pp. 965–97910.1016/S0307-904X(98)10030-6Suche in Google Scholar
8 B. W.Matthews, C. A. J.Fletcher, A. C.Partridge, S.Vasquez: Computations of curved free surface water flow on spiral concentrators, J. Hydraulic Engineering125 (1999), No. 11, pp. 1126–11310.1061/(ASCE)0733-9429(1999)125:11(1126)Suche in Google Scholar
9 M. A.Doheim, A. F. AbdelGawad, G. M. A.Mahran, M. H.Abu-Ali, A. M.Rizk: Numerical simulation of particulate flow in spiral separators: Part I – Low solids concentration (0.3 and 3 % solids), Applied Mathematical Modeling37 (2013), No. 1–2, pp. 198–21510.1016/j.apm.2012.02.022Suche in Google Scholar
10 A. B.Holland-Batt, P. N.Holtham: Particle and fluid motion on spiral separators, J. Minerals Engineering4 (1991), No. 3–4, pp. 457–48210.1016/0892-6875(91)90147-NSuche in Google Scholar
11 P. N.Holtham: Experimental Validation of a Fundamental Model of Coal Spirals, Report in the Australian Coal Association Research Program (ACARP), Project No. C4046, ACARP, Australia (1998) http://www.acarp.com.au/abstracts.aspx?repId=C4046Suche in Google Scholar
12 P. N.Holtham: Particle transport in gravity concentrators and the Bagnold effect, Minerals Engineering5 (1992), No. 2, pp. 205–22110.1016/0892-6875(92)90043-9Suche in Google Scholar
13 V.Yakhot, S. A.Orszag: Renormalization group analysis of turbulence I – Basic theory, Journal of Scientific Computing1 (1986), No. 1, pp. 1–5110.1007/BF01061452Suche in Google Scholar
14 Fluent 6.3.26 User's Guide: www.fluentusers.com, Fluent Inc., USA (2006)Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Adhesive tensile testing of atmospheric plasma sprayed zinc coating on a 1.4301 substrate
- Fatigue strength of nodular cast iron with regard to heavy-wall applications
- Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
- The effect of using heat treated ulexite and cashew in automotive friction materials
- Residual stress relaxation in welded large components
- Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression
- Iznik tiles: A new production technology and respective characterization
- Quality during milling of a glass fiber reinforced polymer composite
- Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel
- Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
- Effects of the thixocasting injection velocity on tensile properties of an A357 Al alloy
- Solid mold investment casting – A replication process for open-cell foam metal production
- Design of an impact testing machine for polymer films by the free falling dart procedure
- Mechanical and electrical properties of Sb-Ga50Au10In40 alloys
- CFD simulation of particulate flow in a spiral concentrator
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Adhesive tensile testing of atmospheric plasma sprayed zinc coating on a 1.4301 substrate
- Fatigue strength of nodular cast iron with regard to heavy-wall applications
- Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
- The effect of using heat treated ulexite and cashew in automotive friction materials
- Residual stress relaxation in welded large components
- Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression
- Iznik tiles: A new production technology and respective characterization
- Quality during milling of a glass fiber reinforced polymer composite
- Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel
- Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
- Effects of the thixocasting injection velocity on tensile properties of an A357 Al alloy
- Solid mold investment casting – A replication process for open-cell foam metal production
- Design of an impact testing machine for polymer films by the free falling dart procedure
- Mechanical and electrical properties of Sb-Ga50Au10In40 alloys
- CFD simulation of particulate flow in a spiral concentrator