Startseite Fracture Toughness of Alumina Ceramics Determined by Vickers Indentation Technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fracture Toughness of Alumina Ceramics Determined by Vickers Indentation Technique

  • Marijana Majić und Lidija Ćurković
Veröffentlicht/Copyright: 26. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fracture toughness (KIC) of high purity cold isostatically pressed alumina ceramic (CIP-Al2O3) was determined from the size of cracks induced by Vickers hardness testing at wide range of loads. The observed cracks appeared at following loads: 4.905 N, 9.81 N, 29.43 N and 49.05 N. The studied material exhibits half-penny crack system at lower load of 4.905 N, but it proceeds as the Palmqvist crack system at higher loads, which was determined computationally. For the fracture toughness calculation different models were compared. It was found that fracture toughness increases by rising applied load for all kind of models, which is explained by the indentation size effect. As the fracture toughness overestimation can lead to product malfunction, it is suggested to use the Niihara model, which gives the smallest fracture toughness values.

Kurzfassung

Die Bruchzähigkeit KIC von hochreiner isostatisch kaltgepresster Aluminiumoxidkeramik (CIP-Al2O3) wurde anhand der Rissgröße bestimmt, die durch Vickershärtemessungen bei einer großen Bandbreite von Lasten induziert wurde. Die Risse traten bei den folgenden Lasten auf: 4,905 N, 9,81 N, 29,43 N und 49,05 N. Die untersuchten Materialien weisen ein so genanntes Half-Penny-Risssystem bei niedrigeren Lasten von 4,905 N auf. Es schreitet jedoch im Palmquvist-Risssystem bei höheren Lasten fort, was rechnerisch ermittelt wurde. Für die Berechnung der Bruchzähigkeit wurden verschiedene Modelle verglichen. Es wurde herausgefunden, dass die Bruchzähigkeit mit zunehmender angelegter Last in allen angewandten Modellen steigt, was mit der Größe des Indenters erklärt wurde. Da eine Überschätzung der Bruchzähigkeit zu einem Funktionsausfall eines Produktes führen kann, wird vorgeschlagen das Niihara Modell zu verwenden, das die niedrigsten Bruchzähigkeitswerte liefert.


Marijana Majić, born 1985, achieved master's degree in mechanical engineering, at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. She is employed as research assistant/scientific novice at the same institution, at the Department of Materials. She is postgraduate student of material science and engineering at the Faculty of Mechanical Engineering and Naval Architecture.

Lidija Ćurković, born 1966, graduated at the Faculty of Chemical Engineering and Techno­logy, University of Zagreb in 1990. After gra­duating she worked at the Department of Analytical Chemistry at the same faculty. In 1995 she acquired the Master's degree and the Doctor's degree in 1999 at the Faculty of Chemical Engineering and Technology in Zagreb. Since 2000 she has been working at the Department of Materials of the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. She is now associate professor and Head of Laboratory for Chemical Analysis of Metals at Faculty of Mecha­nical Engineering and Naval Architecture, University of Zagreb. The scientific work includes research in the field of material science and engineering, particularly ceramics and ceramic coating.


References

1 H.Fahner: Breviary Technical Ceramics, Verband der Keramischen Industrie e.V. (2004)Suche in Google Scholar

2 J. K.Wessel: Handbook of Advanced Materials: Enabling New Designs, John Wiley & Sons, USA (2004)10.1002/0471465186Suche in Google Scholar

3 J.Gong: Determining indentation toughness by incorporating true hardness into fracture mechanics equations, J. Eur. Ceram. Soc.19 (1999), pp. 1585159210.1016/S0955-2219(98)00256-8Suche in Google Scholar

4 J.Gong: Statistical analysis of fracture toughness of soda-lime glass determined by indentation, J. Non-Cryst. Solids279 (2001), pp. 21922310.1016/S0022-3093(00)00418-XSuche in Google Scholar

5 R. E.Chinn: Ceramography: Preparation and Analysis of Ceramic Microstructures, Wiley-American Ceramic Society, USA (2002)Suche in Google Scholar

6 J.Gong, Z.Guan: Load dependence of low-load Knoop hardness in ceramics: a modified PSR model, Mater. Lett.47 (2001), pp. 14014410.1016/S0167-577X(00)00225-1Suche in Google Scholar

7 R.Cep, M.Sadilek: Determination of ceramic materials mechanical properties by using of indentant techniques, Annals of the University of Petroşani, Mechanical Engineering11 (2009), pp. 2328Suche in Google Scholar

8 Z.Li, A.Ghosh, A. S.Kobayashi, R. C.Bradt: Indentation fracture toughness of sintered silicon carbide in the Palmqvist crack regime, J. Am. Ceram. Soc.72 (1989), No. 6, pp. 90491110.1111/j.1151-2916.1989.tb06242.xSuche in Google Scholar

9 M. C. C.de Sá e Benevides de Moraes, C. N.Elias, J. D.Filho, L.Guimarães de Oliveira: Mechanical properties of alumina-zirconia composites for ceramic abutments, Mater. Res.7 (2004), No. 4, pp. 64364910.1590/S1516-14392004000400021Suche in Google Scholar

10 M. W.Barsoum: Fundamentals of Ceramics, McGraw-Hill, USA (2003)10.1887/0750309024Suche in Google Scholar

11 A.Bravo-Leon, Y.Morikawa, M.Kawahara, M. J.Mayo: Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater.50 (2002), pp. 4555456210.1016/S1359-6454(02)00283-5Suche in Google Scholar

12 J. D.Lin, J. G.Duh: Fracture toughness and hardness of ceria and yttria-doped tetragonal zirconia ceramics, Mater. Chem. Phys.78 (2002), pp. 25326110.1016/S0254-0584(02)00327-9Suche in Google Scholar

13 K.Niihara, R.Morena, D. P. H.Hassselman: Evaluation of KIC of brittle solids by the indentation methods with low crack-to-indent ratio, J. Mater. Sci. Lett.1 (1982), pp. 131610.1007/BF00724706Suche in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-04-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110321/html
Button zum nach oben scrollen