Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
-
Aniruddha Ghosh
Abstract
Kinetics of permanganate oxidation of D-mannitol have been investigated spectrophotometrically under pseudo-first-order conditions in aqueous acidic media at 30 °C. The spectral analysis of hydrazone derivative of the product indicates the product to be an aldehyde. The observed rate constant value was found to be relatively slow in the uncatalyzed path, which increases by the presence of four isomeric promoters: 2-picolinic acid (2-PA), 4-picolinic acid (4-PA), 2,3-dipicolinic acid (2,3-diPA) and 2,6-dipicolinic acid (2,6-diPA). The catalytic effect of sodium dodecylbenzene sulfonate (SDBS) surfactant on the permanganate oxidation of D-mannitol has been also studied in the presence of the promoters. The critical micelle concentration (CMC) of SDBS alone and in presence of D-mannitol was determined by conductometry and spectrophotometry. The aggregation and morphological changes during reaction were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The variation of the reaction rates for the different promoters in the presence and absence of SDBS micellar catalyst is discussed qualitatively in the terms of partitioning nature of substrate, charge of surfactant and reactants. 2,3-diPA in association with SDBS as micellar catalyst accelerated the reaction velocity compared to the uncatalyzed path.
Kurzfassung
Es wurde die Kinetik der Permanganatoxidation von D-Mannitol im sauren wässrigen Medium unter den Bedingungen der Pseudo-Erster-Ordnung spektrophotometrisch bei 30 °C untersucht. Die Spektralanalyse der Hydrazonderivatprodukte zeigt, dass es sich bei dem Produkt um einen Aldehyd handelt. Die bestimmte Geschwindigkeitskonstante war für die nicht katalysierte Reaktionsroute relativ langsam; sie nahm in Gegenwart der vier isomeren Promotoren 2-Picolinsäure (2-PA), 4-Picolinsäure (4-PA), 2,3-Dipicolinsäure (2,3-diPA) und 2,6-Dipicolinsäure (2,6-diPA) zu. Der katalytische Einfluss von Natriumdodecylbenzensulfonat (SDBS) auf die Permanganatoxidation von D-Mannitol in Anwesenheit der Promotoren wurde studiert. Die kritische Mizellenbildungskonzentration (CMC) von SDBS allein und in Gegenwart von D-Mannitol wurde konduktometrisch und spektrophotometrisch bestimmt. Änderungen der Aggregation und der Morphologie während der Reaktion wurden mittels Rasterelektronenmikroskopie (REM) und Transmissionselektronenmikroskopie (TEM) untersucht. Die Variation der Reaktionsgeschwindigkeit mit verschiedenen Promotoren in Ab- und Anwesenheit des mizellaren Katalysators SDBS wurde qualitativ hinsichtlich der Verteilungseigenschaften des Substrats, der Ladung des Tensids und der Reaktionspartner diskutiert. Im Vergleich zu der nicht katalysierten Reaktionsroute beschleunigte der Promotor 2,3-diPA in Verbindung mit dem mizellaren Katalysator SDBS die Reaktion.
References
1. Freeze, H. H. and Sharma, V.: Metabolic manipulation of glycosylation disorders in humans and animal models. Semin. Cell Dev. Biol.21 (2010) 655–662. 10.1016/j.semcdb.2010.03.011Suche in Google Scholar PubMed PubMed Central
2. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Mannitol to Mannose in Aqueous Media. Tenside Surf. Det.50 (2013) 249–258. 10.3139/113.110256Suche in Google Scholar
3. Das, A. K., Islam, M. and Bayen, R.: Studies on kinetics and mechanism of oxidation of D-sorbitol and D-mannitol by cerium(IV) in aqueous micellar sulfuric acid media. Int. J. Chem. Kinet.40 (2008) 445–453. 10.1002/kin.20332Suche in Google Scholar
4. Saha, B., Das, M. and Das, A. K.: Micellar effects on the reaction of Cr (VI) oxidation of hexitols in the presence and absence of picolinic acid in aqueous acid media. J. Chem. Research (S) (2003) 658–661. 10.3184/030823403322655996Suche in Google Scholar
5. Kumara, Y. L., Nadh, R. V. and Radhakrishnamurti, P. S.: Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium. Russ. J. Phys. Chem. A88 (2014) 774–778. 10.1134/S003602441405015XSuche in Google Scholar
6. Odebunmi, E. O., Oyetunji, O. A and Marufu, H.: The kinetics and mechanism of oxidation of d-mannose and d-mannitol by KMnO4 and hexachloroiridate(IV). Nig. J. Sci.33 (1999) 145–154.Suche in Google Scholar
7. Hosahalli, R. V., Savanur, A. P., Nandibewoor, S. T. and Chimatadar, S. A.: Ruthenium (III)-mediated oxidation of D-mannitol by cerium (IV) in aqueous sulfuric acid medium: A kinetic and mechanistic approach. Int. J. Chem. Kinet.42 (2010) 440–452. 10.1002/kin.20485Suche in Google Scholar
8. Sharma, V. K., Sohn, M., Anquanda, G. A. K. and Nesnans, N.: Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). Chemosphere87 (2012) 644–648. 10.1016/j.chemosphere.2012.01.019Suche in Google Scholar PubMed
9. Mukherjee, K., Ghosh, A., Saha, R., Sar, P., Malik, S. and Saha, B.: Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose. Spectrochim. Acta, Part A122 (2014) 204–208. 10.1016/j.saa.2013.11.068Suche in Google Scholar PubMed
10. Malik, M. A., AL-Thabaiti, S. A. and Khan, Z.: Kinetics of oxidation of d-glucose by permanganate in aqueous solution of cetyltrimethylammonium bromide. Colloids Surf. A337 (2009) 9–14. 10.1016/j.colsurfa.2008.11.005Suche in Google Scholar
11. Hassan, R. A., Dahy, R., Ibrahim, S., Zaafarany, I. and Fawzy, A.: Oxidation of Some Macromolecules. Kinetics and Mechanism of Oxidation of Methyl Cellulose Polysaccharide by Permanganate Ion in Acid Perchlorate Solutions. Ind. Eng. Chem. Res.51 (2012) 5424–5432. 10.1021/ie200646pSuche in Google Scholar
12. Andrabi, S. M. Z., Malik, M. A. and Khan, Z.: Permanganate partitioning in cationic micelles of cetyltrimethylammonium bromide: A kinetic study of d-fructose oxidation. Colloids Surf. A299 (2007) 58–64. 10.1016/j.colsurfa.2006.11.018Suche in Google Scholar
13. Sharma, V. and Chourey, V. R.: A Kinetics study of miceller catalysed oxidation of propionic acid by acidic permanganate. Int. J. Adv. Res.2 (2014) 764–772.Suche in Google Scholar
14. Bhattacharyya, P., Ghosh, A. and Saha, B.: Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure. Tenside Surf. Det.52 (2015) 36–40. 10.3139/113.110346Suche in Google Scholar
15. Ghosh, A., Sengupta, K., Saha, R. and Saha, B.: Effect of CPC micelle on N-hetero-aromatic base promoted room temperature permanganate oxidation of 2-butanol in aqueous medium. J. Mol. Liq.198 (2014) 369–380. 10.1016/j.molliq.2014.07.018Suche in Google Scholar
16. Perez-Benito, J. F. and Ferrando, J.: Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of l-Phenylalanine. J. Phys. Chem. B118 (2014) 14949–14960. 10.1021/jp5089564Suche in Google Scholar PubMed
17. Mukherjee, K. and Saha. B.: Best Combination of Promoter and Micellar Catalyst for Room Temperature Rapid Conversion of D-Lyxose to D-Lyxonic Acid in Aqueous Medium. Tenside Surf. Det.52 (2015) 302–310. 10.3139/113.110379Suche in Google Scholar
18. Saha, R. and Saha, B.: Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera indica). Desalin. Water Treat.52 (2014) 1928–1936. 10.1080/19443994.2013.804458Suche in Google Scholar
19. Saha, B. and Orvig, C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev.254 (2010) 2959–2972. 10.1016/j.ccr.2010.06.005Suche in Google Scholar
20. Ghosh, S. K., Saha, R. and Saha, B.: Toxicity of inorganic vanadium compounds. Res. Chem. Intermed.41 (2015) 4873–4897. 10.1007/s11164-014-1573-1Suche in Google Scholar
21. El-Aila, H. J. Y.: Micellar Catalytic and Salt Effect on Oxidation of EDTA by MnO4-. J. Dispersion Sci. Technol.33 (2012) 1688–1694. 10.1080/01932691.2011.635516Suche in Google Scholar
22. Zhang, J., Sun, Z.-R. and Wang, X.-B.: Examining the Critical Roles of Protons in Facilitating Oxidation of Chloride Ions by Permanganates: A Cluster Model Study. J. Phys. Chem. A.119 (2015) 6244–6251. 10.1021/acs.jpca.5b03328Suche in Google Scholar PubMed
23. Ghosh, A., Saha, R. and Saha, B.: Effect of CHAPS and CPC micelles on Ir(III) catalyzed Ce (IV) oxidation of aliphatic alcohols at room temperature and pressure. J. Mol. Liq.196 (2014) 223–237. 10.1016/j.molliq.2014.03.037Suche in Google Scholar
24. Saha, R., Ghosh, A., Sar, P., Saha, I., Ghosh, S. K., Mukherjee, K. and Saha, B.: Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochim. Acta, Part A116 (2013) 524–531. 10.1016/j.saa.2013.07.065Suche in Google Scholar PubMed
25. Ghosh, A., Saha, R. and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. J. Ind. Eng. Chem.20 (2014) 345–355. 10.1016/j.jiec.2013.03.028Suche in Google Scholar
26. Ghosh, A., Saha, R. and Mukherjee, K.: Choice of suitable micellar catalyst for 2, 2′-bipyridine-promoted chromic acid oxidation of glycerol to glyceraldehyde in aqueous media at room temperature. Res. Chem. Intermed.41 (2015) 3057–3078. 10.1007/s11164-013-1415-6Suche in Google Scholar
27. Sorella, G. L., Strukul, G. and Scarso, A.: Recent advances in catalysis in micellar media. Green Chem.17 (2015) 644–683. 10.1039/c4gc01368aSuche in Google Scholar
28. Dubey, N.: Thermodynamic and FT-IR Study of Micellization of Sodium Dodecylbenzene Sulfonate in Some Simple Alcohols. Chem. Eng. Comm.198 (2011) 1394–1404. 10.1080/00986445.2011.560519Suche in Google Scholar
29. Feigl, F.: Spot Tests in Organic Analysis, 5th ed.; Elsevier: Amsterdam, the Netherlands (1956) p. 391 and 358.Suche in Google Scholar
30. Sharma, M., Sharma, G., Agrawal, B., Khandelwal, C. L. and Sharma, P. D.: Kinetics and mechanism of electron transfer reactions. Osmium(VIII) catalyzed oxidation of mannitol by hexacyanoferrate(III) in aqueous alkaline medium. Transition Met. Chem.30 (2005) 546–551. 10.1007/s11243-005-0396-8Suche in Google Scholar
31. Ghosh, A., DasP., Saha, D., SarP., Ghosh, S. K. and Saha, B.: Rate enhancement via sodium dodecyl sulfate (SDS) encapsulation of metal-mediated cerium(IV) oxidation of D-mannitol to D-mannose at room temperature and pressure: a kinetic and mechanistic approach. Res. Chem. Intermed.42 (2016) 2619–2639. 10.1007/s11164-015-2171-6Suche in Google Scholar
32. Sen, P. K., Samaddar, P. R. and Das, K.: Kinetics and Mechanism of the Oxidation of Propan-1-ol and Propan-2-ol by Permanganate in the Absence and Presence of Tween-20 in Perchloric Acid Medium. Transition Met. Chem.30 (2005) 907–914. 10.1007/s11243-005-6287-1Suche in Google Scholar
33. Ansari, W. H., Fatma, N., Panda, M. and Kabir-ud-Din: Solubilization of polycyclic aromatic hydrocarbons by novel biodegradable cationic gemini surfactant ethane-1,2-diyl bis(N, N-dimethyl-N-hexadecylammoniumacetoxy) dichloride and its binary mixtures with conventional surfactants. Soft Matter9 (2013) 1478–1487. 10.1039/c2sm26926kSuche in Google Scholar
34. Hait, S. K., Majhi, P. R., Blume, A. and Moulik, S. P.: A Critical Assessment of Micellization of Sodium Dodecyl Benzene Sulfonate (SDBS) and Its Interaction with Poly(vinyl pyrrolidone) and Hydrophobically Modified Polymers, JR 400 and LM 200. J. Phys. Chem. B107 (2003) 3650–3658. 10.1021/jp027379rSuche in Google Scholar
35. Dubey, N.: Thermodynamic Properties of Micellization of Sodium Dodecylbenzene Sulfonate in the Aqueous-Rich Region of 1-Pentanol and 1-Hexanol. J. Chem. Eng. Data54 (2009) 1015–1021. 10.1021/je800934rSuche in Google Scholar
36. Bencinia, A. and Lippolis, V.: 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord. Chem. Rev.254 (2010) 2096–2180. 10.1016/j.ccr.2010.04.008Suche in Google Scholar
37. Khullar, P., Singh, V., Mahal, A., Kumar, H., Kaur, G. and Bakshi, M. S.: Block Copolymer Micelles as Nanoreactors for Self-Assembled Morphologies of Gold Nanoparticles, J. Phys. Chem. B117 (2013) 3028–3039. 10.1021/jp310507mSuche in Google Scholar PubMed
38. Khullar, P., Singh, V., Mahal, A., Kaur, H., Singh, V., Banipal, T. S., Kaur, G. and Bakshi, M. S.: Tuning the Shape and Size of Gold Nanoparticles with Triblock Polymer Micelle Structure Transitions and Environments, J. Phys. Chem. C115 (2011) 10442–10454. 10.1021/jp201712aSuche in Google Scholar
39. Javadian, S., Nasiri, F., Heydari, A., Yousefi, A. and Shahir, A. A.: Modifying Effect of Imidazolium-Based Ionic Liquids on Surface Activity and Self-Assembled Nanostructures of Sodium Dodecyl Sulfate. J. Phys. Chem. B118 (2014) 4140–4150. 10.1021/jp5010049Suche in Google Scholar PubMed
40. Malik, S. and Saha. B.: Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature. Tenside Surf. Det.52 (2015) 502–511. 10.3139/113.110403Suche in Google Scholar
41. Dash, S., Patel, S. and Mishra, B. K.: Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron65 (2009) 707–739. 10.1016/j.tet.2008.10.038Suche in Google Scholar
42. Kumar, D., Akram, M. and Kabir-ud-Din: Kinetic and Mechanistic Studies on [Zn (II)-Gly-Phe]+-Ninhydrin Reaction in Aqueous and Cationic CTAB Surfactant Micelles. J. Dispersion Sci. Technol.35 (2014) 1709–1716. 10.1080/01932691.2013.870043Suche in Google Scholar
43. Kumar, D., Rub, M., Akram, A. M. and Kabir-ud-Din: Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: Role of CTAB and gemini (16-s-16, s = 4, 5, 6) surfactant micelles. J. Colloid Interface Sci.418 (2014) 324–329. 10.1016/j.jcis.2013.12.023Suche in Google Scholar PubMed
44. Bakshi, M. S.: How Surfactants Control Crystal Growth of Nanomaterials, Cryst. Growth Des.16 (2016) 1104–1133. 10.1021/acs.cgd.5b01465Suche in Google Scholar
45. Ghosh, S. K., Ghosh, A., Saha, R. and Saha. B.: Suitable combination of promoter and micellar catalyst for chromic acid oxidation of formaldehyde to formic acid in aqueous acid media at room temperature. Phys. Chem. Liq.53 (2015)146–161. 10.1080/00319104.2014.956168Suche in Google Scholar
46. Malik, S., Ghosh, A., Mukherjee, K. and Saha. B.: Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature. Tenside Surf. Det.51 (2014) 325–332. 10.3139/113.110314Suche in Google Scholar
47. Tucker, I., Penfold, J., Thomas, R. K., Dong, C. C., Golding, S., Gibson, C. and Grillo, I.: The Adsorption and Self-Assembly of Mixtures of Alkylbenzene Sulfonate Isomers and the Role of Divalent Electrolyte. Langmuir27 (2011) 6674–6682. 10.1021/la200961aSuche in Google Scholar PubMed
48. Du, L., Wang, Y., Wang, K. and Luo, G.: Preparation of Calcium Benzene Sulfonate Detergents by a Microdispersion Process. Ind. Eng. Chem. Res.52 (2013) 10699–10706. 10.1021/ie4013425Suche in Google Scholar
49. Chen, Y. and Xu, G.: Improvement of Ca2+-tolerance by the introduction of EO groups for the anionic surfactants: Molecular dynamics simulation. Colloids Surf. A424 (2013) 26–32. 10.1016/j.colsurfa.2013.02.026Suche in Google Scholar
50. Malik, M. A. and Khan, Z.: Submicellar catalytic effect of cetyltrimethylammonium bromide in the oxidation of ethylenediaminetetraacetic acid by MnO4-. Colloids Surf. B64 (2008) 42–48. 10.1016/j.colsurfb.2008.01.003Suche in Google Scholar PubMed
51. Manhas, M. S., Mohammed, F. and Khan, Z.: A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media. Colloids Surf. A295 (2007) 165–171. 10.1016/j.colsurfa.2006.08.048Suche in Google Scholar
© 2016, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Surface-Active Properties of a Trimeric Sulfate-type Surfactant Derived from Glycerol
- Interface Activity and Thermodynamic Properties of Cardanol Polyoxyethylene Ether Carboxylates
- Synthesis and Properties of Dioctyl Diphenyl Ether Disulfonate Gemini Surfactant
- Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants
- Application
- Enhanced Soil Remediation via Plant-Based Surfactant Compounds from Acanthophyllum Laxiusculum
- Micellar Catalysis
- Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
- Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
- Corrosion Inhibition
- Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
- Laundry/Cleaning Agents
- Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners
- Laundry Performance: Effect of Detergent and Additives on Consumer Satisfaction
- Deposition of Solid Impurity During Washing of Softented Cotton in Function of the Mixtures of Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Surface-Active Properties of a Trimeric Sulfate-type Surfactant Derived from Glycerol
- Interface Activity and Thermodynamic Properties of Cardanol Polyoxyethylene Ether Carboxylates
- Synthesis and Properties of Dioctyl Diphenyl Ether Disulfonate Gemini Surfactant
- Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants
- Application
- Enhanced Soil Remediation via Plant-Based Surfactant Compounds from Acanthophyllum Laxiusculum
- Micellar Catalysis
- Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
- Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
- Corrosion Inhibition
- Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
- Laundry/Cleaning Agents
- Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners
- Laundry Performance: Effect of Detergent and Additives on Consumer Satisfaction
- Deposition of Solid Impurity During Washing of Softented Cotton in Function of the Mixtures of Surfactants