The Role of Rhamnolipids in Coffee Ring Deposition and Influence of Metal Ions
-
Zulfiqar Ali Raza
Abstract
The deposition of material at the edge of an evaporating droplet is known as the coffee ring effect. This phenomenon is widespread in various colloidal and bacterial systems. The study has examined the self-assembly and deposition of colloidal rhamnolipid (a natural surfactant) structures on a glass surface. The effects of the rhamnolipid concentration, pH and the addition of cations on the deposition formation and the alteration in coffee ring effect were studied by using in-vitro scanning electron microscope observation. Above the critical micelle concentration, a transition from ring-like deposition to dispersed deposition is observed. Whereas upon the addition of cations, the multi-distribution of aggregates size enhances the non-homogeneity of the drying film and consequently results in multi-nucleation of rhamnolipid aggregates.
Kurzfassung
Die Materialablagerung an dem Rand eines verdampfenden Tropfens kennt man als „Kaffee-Ring“-Effekt. Dieses Phänomen ist in vielen kolloidalen und bakteriellen System weit verbreitet. In dieser Untersuchung wurden die Selbstorganisation und die Abscheidung von kolloidalen Rhamnolipidstrukturen (einem natürlichem Tensid) auf einer Glasoberfläche untersucht. Der Einfluss der Rhamnolipidkonzentration, des pH-Werts und die Zugabe von Kationen auf die Entstehung der Ablagerung und die Veränderung des “Kaffee-Ring”-Effekts wurden mittels der in-vitro-Rasterelektronenmikroskopie untersucht. Oberhalb der kritischen Mizellenbildungskonzentration wurde ein Übergang von der ringförmigen zur feinverteilten Ablagerung beobachtet. Während der Zugabe von Kationen verbesserte die Multi-Verteilung der Aggregatgröße die Nicht-Homogenität des getrockneten Films und daraus resultierte eine Mehrfachkeimbildung der Rhamnolipidaggregate.
References
1. Hu, H. and Larson, R. G.: Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B106 (2002) 1334–1344. 10.1021/jp0118322Suche in Google Scholar
2. Kaya, D., Belyi, V. A. and Muthukumar, M.: Pattern formation in drying droplets of polyelectrolyte and salt, J. Chem. Phys.133 (2010) 114905. 10.1063/1.3493687Suche in Google Scholar PubMed
3. Byun, M., Han, W., Qiu, F., Bowden, N. B. and Lin, Z.: Hierarchically ordered structures enabled by controlled evaporative self-assembly, Small6 (2010) 2250–2255. 10.1002/smll.201000816Suche in Google Scholar PubMed
4. Javid, A., Raza, Z. A., Hussain, T. and Rehman, A.: Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric, J. Microencapsulation31 (2014) 461–468. 10.3109/02652048.2013.879927Suche in Google Scholar PubMed
5. Kinge, S., Crego-Calama, M. and Reinhoudt, D. N.: Self-assembling nanoparticles at surfaces and interfaces, Chem. Phys. Chem.9 (2008) 20–42. 10.1002/cphc.200700475Suche in Google Scholar PubMed
6. Larson, R. G.: Re-shaping the coffee ring. Angew. Chem. Int. Ed.51 (2012) 2546–2548. 10.1002/anie.201108008Suche in Google Scholar PubMed
7. Park, J. and Moon, J.: Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing, Langmuir22 (2006) 3506–3513. 10.1021/la053450jSuche in Google Scholar PubMed
8. Yauk, C. L. and Berndt, M. L.: Review of the literature examining the correlation among DNA microarray techniques, Environ. Mol. Mutagen.48 (2007) 380–394. 10.1002/em.20290Suche in Google Scholar PubMed PubMed Central
9. Weon, B. M. and Je, J. H.: Capillary force repels coffee-ring effect, Phys. Rev. E82 (2010) 015305R. 10.1103/PhysRevE.82.015305Suche in Google Scholar PubMed
10. Yunker, P. J., Still, T., Lohr, M. A. and Yodh, A. G.: Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature476 (2011) 308–311. 10.1038/nature10344Suche in Google Scholar PubMed
11. Sefiane, K.: Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment, J. Coll. Interface Sci.272 (2004) 411–419. 10.1016/j.jcis.2003.10.039Suche in Google Scholar PubMed
12. Deegan, R. D.: Pattern formation in drying drops, Phys. Rev. E61 (2000) 475–485. 1063-651X/2000/61(1)/475(11)/$15.00Suche in Google Scholar
13. Kajiya, T., Kobayashi, W., Okuzono, T. and Doi, M.: Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants, J. Phys. Chem. B113 (2009) 15460–15466. 10.1021/jp9077757Suche in Google Scholar PubMed
14. Still, T., Yunker, P. J. and Yodh, A.: G. Surfactant-induced Marangoni eddies alter coffee-rings of evaporating colloidal drops, Langmuir28 (2012) 4984–4988. 10.1021/la204928mSuche in Google Scholar PubMed
15. Sanchez, M., Aranda, F. J., Espuny, M. J. et al.: Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media, J. Coll. Interface Sci.307 (2007) 246–253. 10.1016/j.jcis.2006.11.041Suche in Google Scholar PubMed
16. Champion, J. T., Gilkey, J. C., Lamparski, H. et al.: Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane, J. Coll. Interface Sci.170 (1995) 569–574. 10.1006/jcis.1995.1136Suche in Google Scholar
17. Raza, Z. A., Khalid, Z. M., Khan, M. S., Banat, I. M., Rehman, A., Naeem, A. and Saddique, M. T.: Surface properties and subsurface aggregate assimilation of rhamnolipid surfactants in different aqueous systems, Biotechnol. Lett.32 (2010) 811–816. 10.1007/s10529-010-0216-xSuche in Google Scholar PubMed
18. Hu, H. and Larson, R. G.: Marangoni effect reverses coffee-ring depositions, J. Phys. Chem. B110 (2006) 7090–7094. 10.1021/jp0609232Suche in Google Scholar PubMed
19. Shmuylovich, L., Shen, A. Q. and Stone, H. A.: Surface morphology of drying latex films: multiple ring formation, Langmuir18 (2002) 3441–3445. 10.1021/la011484vSuche in Google Scholar
20. Fischer, B. J.: Particle convection in an evaporating colloidal droplet, Langmuir18 (2002) 60–67. 10.1021/la015518aSuche in Google Scholar
21. Ishigami, Y., Gama, Y., Fumiyoshi, I. et al.: Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant, Langmuir9 (1993) 1634–1636. 10.1021/la00031a006Suche in Google Scholar
22. Raza, Z. A., Rehman, A., Hussain, M. T., Masood, R., Haq, A., Saddique, M. T., JavidA. and Ahmad, N.: Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric, Carbohyd. Res.391 (2014) 97–105. 10.1016/j.carres.2014.03.009Suche in Google Scholar PubMed
© 2015, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Linear Polyethers as Additives for AOT-Based Microemulsions: Prediction of Percolation Temperature Changes Using Artificial Neural Networks
- Adsorption and Micellization Behavior of Mixtures of Amphiphilic Drugs with Small Amounts of Bile Salts
- Determination of Shape Transition Concentrations in Self-Assembled Surfactant Micelles by UV-Visible Spectrophotometry
- Synthesis and Colloidal-Chemical Properties of Surfactants Based on Alkyl Amines and Propylene Oxide
- A Study of Relationship Between Oil-Water Interfacial Dilational Rheology and Oil Recovery of Alkaline Flooding
- Mizellar Catalysis
- Best Combination of Promoter and Micellar Catalyst for Room Temperature Rapid Conversion of D-Lyxose to D-Lyxonic Acid in Aqueous Medium
- Novel Surfactants
- Surface and Fluorescence Studies of Bis-Sulfosuccinate Anionic Gemini Surfactants Derived from Dodecanol Using Different Flexible Methylene Chains as Spacers
- The Role of Rhamnolipids in Coffee Ring Deposition and Influence of Metal Ions
- Synthesis
- Random Copolymer as Polymeric Surfactant in Seed Emulsion Polymerization
- Body Care
- Study of Tea Saponin Toothpaste
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Linear Polyethers as Additives for AOT-Based Microemulsions: Prediction of Percolation Temperature Changes Using Artificial Neural Networks
- Adsorption and Micellization Behavior of Mixtures of Amphiphilic Drugs with Small Amounts of Bile Salts
- Determination of Shape Transition Concentrations in Self-Assembled Surfactant Micelles by UV-Visible Spectrophotometry
- Synthesis and Colloidal-Chemical Properties of Surfactants Based on Alkyl Amines and Propylene Oxide
- A Study of Relationship Between Oil-Water Interfacial Dilational Rheology and Oil Recovery of Alkaline Flooding
- Mizellar Catalysis
- Best Combination of Promoter and Micellar Catalyst for Room Temperature Rapid Conversion of D-Lyxose to D-Lyxonic Acid in Aqueous Medium
- Novel Surfactants
- Surface and Fluorescence Studies of Bis-Sulfosuccinate Anionic Gemini Surfactants Derived from Dodecanol Using Different Flexible Methylene Chains as Spacers
- The Role of Rhamnolipids in Coffee Ring Deposition and Influence of Metal Ions
- Synthesis
- Random Copolymer as Polymeric Surfactant in Seed Emulsion Polymerization
- Body Care
- Study of Tea Saponin Toothpaste