Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
-
Kakali Mukherjee
Abstract
Cr(VI) is introduced into environment as a byproduct of industries. It is highly toxic. Biosorption of hexavalent chromium by various types of sawdust appears as a very cost-effective alternative for decontamination of Cr(VI) bearing effluents. In this work water extract of siris sawdust is used for the bioremediation of hexavalent chromium. Cr(VI) ions were reduced to Cr(III) ions as a result of oxidation of organic components present in the water extract of siris sawdust. Formation of Cr(III) is proved by UV-VIS spectroscopy. Functional groups involved in the reduction of Cr(VI) are characterized by FTIR spectroscopy. Bioremediation rate is increased by the use of anionic surfactant sodium dodecylsulphate (SDS) and neutral surfactant Triton-X-100 (TX-100). Here they act as micellar catalyst. Formation of micelles which is responsible for the catalysis of the process is proved by SEM and optical images of the solution. In absence of surfactants 39 % of the total chromium(VI) is reduced within 531 h whereas removal percentage increases upto 54 % in presence of TX-100. Again in presence of SDS the reduction process is almost 99 % complete within 531 h.
Kurzfassung
Cr(VI) wird als Nebenprodukt der Industrie in die Umwelt eingetragen. Es ist hoch toxisch. Die Biosorption des hexavanten Chroms durch verschiedene Sägemehl-Typen erscheint als kostengünstige Alternative zur Dekontamination von Cr(VI)-haltigen Abwässern. In dieser Arbeit wurde ein Extrakt aus Sägemehl des Lebbekbaums zur Bioremediation von hexavalentem Chrom verwendet. Chrom(VI)-Ionen werden bei der Oxidation der organischen Komponenten, die im wässrigen Extrakt des Lebbekbaum-Sägemehls vorliegen, zu Chrom(III)-Ionen reduziert. Die Entstehung von Chrom(III)-Ionen ist mittels UV-VIS-Spektroskopie gesichert. Die Bioremediations-Geschwindigkeit ließ sich durch Zugabe des anionischen Tensids Natriumdodecylsufat (SDS) und des nichtionischen Tensids Triton-X-100 (TX-100) steigern. Diese Tenside sind bei diesem Vorgang mizellare Katalysatoren. Die Mizellenbildung, die für die Katalyse des Prozesses verantwortlich ist, wird mit SEM und optischen Bildern der Lösung belegt. Ohne anwesende Tenside werden 39 % des gesamten Chrom(VI) in 531 Stunden reduziert, bei Anwesenheit von TX-100 beträgt die Entfernungsrate bis zu 54 %. In Anwesenheit von SDS ist der Reduktionsvorgang mit 99 % nach 531 Stunden nahezu vollständig.
References
1. Ghosh, D., Bhattacharya, B., Mukherjee, B., Manna, B., Sinha, M., Chowdhury, J. and Chowdhury, S.: Role of chromium supplementation in Indians with type 2 diabetes mellitusThe Journal of Nutritional Biochemistry13 (2002) 690–697. 10.1016/S0955-2863(02)00220-6Suche in Google Scholar
2. Tunceli, A. and Turker, A. R.: Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS, Talanta57 (2002) 1199–1204. 10.1016/S0039-9140(02)00237-0Suche in Google Scholar
3. Codd, R., Dillon, C. T., Levina, A. and Lay, P. A.: Studies on the genotoxicity of chromium: from the test tube to the cell, Coord. Chem. Rev.216–217 (2001) 537–582. 10.1016/S0010-8545(00)00408-2Suche in Google Scholar
4. Costa, M.: Potential hazards of hexavalent chromate in our drinking water, Toxicol. Appl. Pharmacol.188 (2003) 1–5. 10.1016/S0041-008X(03)00011-5Suche in Google Scholar
5. Balderas, R. D., Reyes, L., Mar, H. J. L., Gonzalez, G. M. T. G., ChukenUJ. L. and Ramirez, A. H.: Photocatalytic reduction of Cr(VI) from agricultural soil column leachates using zinc oxide under UV light irradiation, Environ. Technol.33 (2012) 2673–2680. 10.1080/09593330.2012.676070Suche in Google Scholar
6. Baral, A. and Engelken, R. D.: Chromium-based regulations and greening in metal finishing industries in the USA, Environ. Sci. Policy5 (2002) 121–133. 10.1016/S1462-9011(02)00028-XSuche in Google Scholar
7. Saha, R., Nandi, R. and Saha, B.: Sources and toxicity of hexavalent chromium, J. Coord. Chem.64 (2011) 1782–1806. 10.1080/00958972.2011.583646Suche in Google Scholar
8. Mukherjee, K., Saha, R., Ghosh, A. and Saha, B.: Chromium removal technologies, Res. Chem. Intermed.39 (2013) 2267. 10.1007/s11164-012-0779-3Suche in Google Scholar
9. SahaB. and Orvig.C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents, Coord. Chem. Rev.254 (2010) 2959. 10.1016/j.ccr.2010.06.005Suche in Google Scholar
10. Chen, Y., Tang, G., Yu, Q. J., Zhang, T., Chen, Y. and Gu, T.: Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues, Environ. Technol.30 (2009) 1003–1010. 10.1080/09593330903019268Suche in Google Scholar PubMed
11. Behnajady, M. A., ModirshahlaN. M. N. and Shokri, M.: Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO, Environ. Technol.33 (2012) 265–271. 10.1080/09593330.2011.569957Suche in Google Scholar PubMed
12. Kumar, K. K., Prasad, M. K., Sarma, G. V. S. and Murthy, Ch. V. R.: Biosorption studies for removal of chromium using immobilized marine alga Isochrysis galbana, Indian J. Mar. Sci.35 (2006) 263–267.Suche in Google Scholar
13. Park, D., Yun, Y. S., Jo, J. H. and Park, J. M.: Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger, Water Research39 (2005) 533–540. 10.1016/j.watres.2004.11.002Suche in Google Scholar PubMed
14. Bahafid, W., Sayel, H., Tahri Joutey, N. and Ghachtouli, N. EL.: Removal mechanism of hexavalent chromium by a novel strain of Pichia anomala isolated from industrial effluents of Fez (Morocco), J. Environ. Sci. and Eng.5 (2011) 980–991.Suche in Google Scholar
15. Congevaraam, S., Dhanarani, S., Park, J. M. and Dexilin, K.: Thamaraiselvi, Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates, J. Hazard. Mater.146 (2007) 270–277. 10.1016/j.jhazmat.2006.12.017Suche in Google Scholar PubMed
16. Saha, R., Mukherjee, K., Saha, I., Ghosh, A. S. K. and Saha, B.: Removal of hexavalent chromium from water by adsorption using mosambi peel (Citrus limetta), Res. Chem Intermed39 (2013) 2245. 10.1080/19443994.2013.804458Suche in Google Scholar
17. Saha, R., Saha, I., Nandi, R., Ghosh, A., Basu, A., Ghosh, S. K. and Saha, B.: Application of Chattim tree (Devil tree, Alstonia scholaris) saw dust as a biosorbent for removal of hexavalent chromium from aqueous solution, Can. J. Chem. Eng.91 (2013) 814. 10.1002/cjce.21703Suche in Google Scholar
18. Fourest, E. and VoleskyB.: Contribution of Sulfonate Groups and Alginate to Heavy Metal Biosorption by the Dry Biomass of Sargassum fluitans, Environ. Sci. Technol.30 (1996) 277–282. 10.1021/es950315sSuche in Google Scholar
19. Puzon, G. J., Roberts, A. R., Kramer, D. M. and Xun, L.: Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics, Environ. Sci. Technol.39 (2005) 2811–2817. 10.1021/es048967 gSuche in Google Scholar
20. Puzon, G. J., Tokala, R. K., Zhang, H., Yonge, D., Peyton, B. M. and Xun, L.: Mobility and recalcitrance of organo-chromium(III) complexes, Chemosphere70 (2008) 2054–2059. 10.1016/j.chemosphere.2007.09.010Suche in Google Scholar PubMed
21. Mukherjee, K., Ghosh, S. K., Nandi, R., Ghosh, A., Saha, I., Saha, R. and Saha, B.: Selection of promoter and micellar catalyst for chromic acid oxidation of tartaric acid in aqueous medium at room temperature, Tenside Surf. Det.50 (2013) 441 (Carl Hanser Verlag, Germany). 10.3139/113.110278.Suche in Google Scholar
22. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Efficient combination of promoter and catalyst for chromic acid oxidation of propan-2-ol to acetone in aqueous acid media at room temperature, Spectrochim. Acta Part A.101 (2013) 294. 10.1016/j.saa.2012.09.095Suche in Google Scholar PubMed
23. Chen, Y., Tang, G., Yu, Q. J., Jhang, T., Chen, Y. and Gu, T.: Environ. Technol.30 (2009) 1003–1010. 10.1080/09593330903019268Suche in Google Scholar
24. Dolan, H. and Eargle, Jr.: Tetraphenylethylene. Infrared and Nuclear Magnetic Resonance Evidence on the Nature of the Dianion, J. Am. Chem. Soc.93 (1971) 3859–3862. 10.1021/ja00745a004Suche in Google Scholar
25. Krimm, S. and Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins, Adv Protein Chem.38 (1986) 181–364. 10.1021/bi952217pSuche in Google Scholar
26. Reddy, P. R., Radhika, M. and Manjula, P.: Synthesis and characterization of mixed ligand complexes of Zn(II) and Co(II) with amino acids: Relevance to zinc binding sites in zinc fingers, J. Chem. Sci.117 (2005) 239–246. 10.1007/BF02709293Suche in Google Scholar
27. Murali, M., Finosh, G. T. and Jayabalan, M.: Studies on Biodegradable Polymeric Nanocomposites Based on Sheet Molding Compound for Orthopedic Applications, Advances in Materials Science and Applications2 (2013) 73–87. 10.5963/AMSA0202006Suche in Google Scholar
28. Das, S. K. and Guha, A. K.: Biosorption of chromium by Termitomyces clypeatus, Colloids Surf. B.60 (2007) 46–54. 10.1016/j.colsurfb.2007.05.021Suche in Google Scholar
29. Mallick, S., Dash, S. S. and Parida.K. M.: Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO3 leaching, J. Colloid and Interface Sci.297 (2006) 419–425. 10.1016/j.jcis.2005.11.001Suche in Google Scholar
30. Gupta, V. K., Shrivastava, A. K. and Jain, N.: Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species, Water Res.35 (2001) 4079–4085. 10.1016/S0043-1354(01)00138-5Suche in Google Scholar
31. Kratochvil, D., Pimentel, P. and Volesky, B.: Removal of Trivalent and Hexavalent Chromium by Seaweed Biosorbent Environ. Sci. Technol.32 (1998) 2693–2698. 10.1021/es971073uSuche in Google Scholar
32. Miretzky, P. and Cirelli, A. F. J.: Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, J. Hazard. Mater.180 (2010) 1–19. 10.1016/j.jhazmat.2010.04.060Suche in Google Scholar PubMed
33. Park, D., Yun, Y. S. and Park, J. M.: Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass, Environ. Sci. Technol.38 (2004) 4860–4864. 10.1021/es035329+Suche in Google Scholar PubMed
34. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K., Maji, P. K. and SahaB.: Surfactant-assisted bioremediation of hexavalentchromium by use of an aqueous extract of sugarcanebagasse. Res. Chem. Intermed. Published online. 10.1007/s11164-013-1077-4Suche in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid