Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
-
Óscar A. Moldes
Abstract
A series of models, based on artificial neural networks, of the percolative behaviour of AOT microemulsions in the presence of crown ethers as additives have been developed. Input variables, related to the chemical structure of crown ethers and their packing with surfactant film, have been selected. As a result, a model has been chosen with a good forecast capability for percolation threshold of such microemulsions.
Kurzfassung
Eine auf neuronalen Netzwerken basierende Modellreihe, die das perkolative Verhalten von AOT-Mikroemulsionen in Gegenwart von Kronenethern als Additive beschreibt, wurde entwickelt. Die Eingangsvariablen wurden hinsichtlich der chemischen Struktur der Kronenether und ihrer Packung im Tensidfilm ausgewählt. Es wurde ein Modell bestimmt, mit dem sich die Perkolationsschwelle solcher Mikroemulsionen gut vorhersagen lässt.
References
1. Montoya, I. A., AstrayG., Cid, A., Manso, J. A., Moldes, O. A. and Mejuto, J. C.: Influence prediction of small organic molecules (ureas and thioureas) upon electrical percolation of AOT-based microemulsions using artificial neural networks, Tenside Surf. Det.49 (2012) 316–320. 10.3139/113.110197Suche in Google Scholar
2. Cid, A., Astray, G., Manso, J. A., Mejuto, J. C. and Moldes, O. A.: Artificial intelligence for electrical percolation of AOT-based microemulsions prediction, Tenside Surf. Det.48 (2011) 477–483. 10.3139/113.110155Suche in Google Scholar
3. Moldes, O. A., Astray, G., Cid, A., Iglesias-Otero, M. A., Morales, J. and Mejuto, J. C.: Percolation threshold of AOT microemulsions with n-alkyl acids as additives prediction by means of artificial neural networks, Tenside Surf. Det.50 (2013) 360–368. 10.3139/113.110268Suche in Google Scholar
4. Feldman, Y., Kozlovich, N., Nir, I. and Garti, N.: Dielectric relaxation in sodium bis(2-ethylhexyl)sulfosuccinate-water-decane microemulsions near the percolation temperature threshold, J. Phys. Rev. E51 (1995) 478–491. 10.1103/PhysRevE.51.478Suche in Google Scholar PubMed
5. Liu, J., Zhang, X. and ZhangH.: Water/AOT/IPM/alcohol reverse microemulsions: influence of salts and nonionic surfactants on structure and percolation behavior, J. Chem. Thermodynamics72 (2014) 1–8. 10.1016/j.jct.2013.12.026Suche in Google Scholar
6. Eicke, H. F., Bercovec, M. and Das-Gupta, B.: Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model, J. Phys. Chem.93 (1989) 314–317. 10.1021/j100338a062Suche in Google Scholar
7. Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories, Physi. Rev. Lett.27 (1971) 1722–1725. 10.1103/PhysRevLett.27.1722Suche in Google Scholar
8. Bernasconi, J. and Weismann, H. J.: Effective-medium theories for site-disordered resistance networks, Phys. Rev. B13 (1976) 1131–1139. 10.1103/PhysRevB.13.1131Suche in Google Scholar
9. Granqvist, C. G. and Hunderi, O.: Conductivity of inhomogeneous materials: effective-medium theory with dipole-dipole interaction, Phys. Rev. B18 (1978) 1554–1561. 10.1103/PhysRevB.18.1554Suche in Google Scholar
10. Paul, S., Bisal, S. and Moulik, S. P.: Physicochemical studies on microemulsions: test of the theories of percolation, J. Phy. Chem-US.96 (1992) 896–901. 10.1021/j100181a067Suche in Google Scholar
11. Hattori, Y., Ushiki, H., Engl, W., Courbin, L. and PanizzaP.: Electrical percolation in the presence of attractive interactions: an effective medium lattice approach applied to microemulsion systems, Physica A353 (2005) 29–27. 10.1016/j.physa.2005.01.040Suche in Google Scholar
12. van Bommel, A., MacIsaac, G., Livingstone, N. and PalepuR.: Dynamics of percolation and energetics of clustering of water/AOT/isooctane microemulsions in the presence of propylene glycol and its oligomers, Fluid Phase Equilibr.237 (2005) 59–67. 10.1016/j.fluid.2005.08.015Suche in Google Scholar
13. Paul, B. K. and Mitra, R. K.: Percolation phenomenon in mixed reverse micelles: the effect of additives, J. Colloid Interf. Sci.295 (2006) 230–242. 10.1016/j.jcis.2005.07.072Suche in Google Scholar PubMed
14. Dasilva-Carvalhal, J., García-Río, L., Gómez-Díaz, D, Mejuto, J. C. and Rodríguez-Dafonte, P.: Influence of crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions, Langmuir19 (2003) 5975–5983. 10.1021/la026857 mSuche in Google Scholar
15. Dasilva-Carvalhal, J., Fernández-GándaraD., García-Río, L. and Mejuto, J. C.: Influence of aza crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions, J. Colloid Interf. Sci.301 (2006) 637–643. 10.1016/j.jcis.2006.05.050Suche in Google Scholar PubMed
16. Hait, S. K., Moulik, S. P., and Palepu, R.: Refined method of assessment of parameters of micellization of surfactants and percolation of w/o microemulsions, Langmuir18 (2002) 2471–2476. 10.1021/la0110794Suche in Google Scholar
17. Funahashi, K.-I.: On the approximate realization of continuous mappings by neural networks, Neural Networks2 (1989) 183–192. 10.1016/0893-6080(89)90003-8Suche in Google Scholar
18. Hornik, K., Stinchcombe, M. and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks2 (1989) 359–366. 10.1016/0893-6080(89)90020-8Suche in Google Scholar
19. García-Río, L., Hervés, P., Leis, J. R. and Mejuto, J. C.: Influence of crown ethers and macrocyclic kryptands upon the percolation phenomena in AOT/isooctane/H2O microemulsions, Langmuir13 (1997) 6083–6087. 10.1021/la970297nSuche in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid