Startseite Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins

  • Andreia Tache EMAIL logo , Gabriel-Lucian Radu und Simona-Carmen Litescu
Veröffentlicht/Copyright: 13. September 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study aimed to assess the antioxidant compound effects on oxidisable substrates, using an effective bio-mimetic system based on human low density lipoproteins (LDL). Thermally generated radicals induce LDL oxidative changes to be identified and quantified. The bio-mimetic system thus developed responded linearly to radicals’ concentration over a range of 10−6-10−5 mol L−1. Cu2+ accentuates lipoperoxidation but, when rosmarinic acid was present, Cu2+ produced an unexpected effect, i.e. increased antioxidant efficiency against lipoperoxidation. Rosmarinic acid inhibits production of lipoperoxides by up to 30 % in the absence of Cu2+ and up to 70 % in its presence when the rosmarinic acid-to-Cu molar ratio is 1: 1.

[1] Bagnati, M., Perugini, C., Cau, C., Bordone, R., Albano, E., & Bellomo, G. (1999). When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochemical Journal, 340, 143–152. http://dx.doi.org/10.1042/0264-6021:340014310.1042/bj3400143Suche in Google Scholar

[2] Dimitros, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17, 505–512. DOI: 10.1016/j.tifs.2006.04.004. http://dx.doi.org/10.1016/j.tifs.2006.04.00410.1016/j.tifs.2006.04.004Suche in Google Scholar

[3] Fan, C., Liu, X., Pang, J., Li, G., & Scheer, H. (2004). Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Analytica Chimica Acta, 523, 225–228. DOI: 10.1016/j.aca.2004.07.038. http://dx.doi.org/10.1016/j.aca.2004.07.03810.1016/j.aca.2004.07.038Suche in Google Scholar

[4] Firth, C. A., Crone, E. M., Flavall, E. A., Roake, J. A., & Gieseg, S. P. (2008). Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin. Biochimica et Biophysica Acta — Molecular Cell Research, 1783, 1095–1101. DOI: 10.1016/j.bbamcr.2008.02.010. http://dx.doi.org/10.1016/j.bbamcr.2008.02.01010.1016/j.bbamcr.2008.02.010Suche in Google Scholar

[5] Gutteridge, J. M. C. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41, 1819–1828. 10.1093/clinchem/41.12.1819Suche in Google Scholar

[6] Halliwell, B. (2009). The wandering of a free radical. Free Radical Biology and Medicine, 46, 531–542. DOI: 10.1016/j.freeradbiomed.2008.11.008. http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.00810.1016/j.freeradbiomed.2008.11.008Suche in Google Scholar

[7] Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4th ed., pp. 502–505). New York, NY, USA: Oxford University Press. Suche in Google Scholar

[8] Khaki, A., Imani, S. A. M., & Golzar, F. S. (2012). Effects of rosmarinic acid on male sex hormones (testosterone-FSHLH) and testis tissue apoptosis after exposure to electromagnetic field (EMF) in rats. African Journal of Pharmacy and Pharmacology, 6, 248–252. DOI: 10.5897/ajpp11.701. 10.5897/AJPP11.701Suche in Google Scholar

[9] Kinter, M. (1995). Analytical technologies for lipid oxidation products analysis. Journal of Chromatography B: Biomedical Sciences and Applications, 671, 223–236. DOI: 10.1016/0378-4347(95)00189-p. http://dx.doi.org/10.1016/0378-4347(95)00189-P10.1016/0378-4347(95)00189-PSuche in Google Scholar

[10] Kovatcheva-Apostolova, E. G., Georgiev, M. I., Ilieva, M. P., Skibsted, L. H., Rødtjer, A., & Andersen, M. L. (2008). Extracts of plant cell cultures of Lavandula vera and Rosa damascene as sources of phenolic antioxidants for use in foods. European Food Research and Technology, 227, 1243–1249. DOI: 10.1007/s00217-008-0842-x. http://dx.doi.org/10.1007/s00217-008-0842-x10.1007/s00217-008-0842-xSuche in Google Scholar

[11] Litescu, S. C., Cioffi, N., Sabbatini, L., & Radu, G. L. (2002). Study of phenol-like compounds antioxidative behavior on low-density lipoprotein gold modified electrode. Electroanalysis, 14, 858–865. DOI: 10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-U. http://dx.doi.org/10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-U10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-USuche in Google Scholar

[12] Litescu, S. C., Tache, A., Eremia, S. A.M., Albu, C., & Radu, G. L. (2010). Electrochemical evaluation of polyphenols preservative effect against lipoperoxidation. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 72, 67–74. Suche in Google Scholar

[13] Monk, P. M. S. (2001). Fundamentals of electroanalytical chemistry (pp. 156–175). Chichester, UK: Wiley. Suche in Google Scholar

[14] Murakami, K., Haneda, M., Qiao, S., Naruse, M., & Yoshino, M. (2007). Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species. Toxicology in Vitro, 21, 613–617. DOI: 10.1016/j.tiv.2006.12.005. http://dx.doi.org/10.1016/j.tiv.2006.12.00510.1016/j.tiv.2006.12.005Suche in Google Scholar

[15] Pastor, I., Esquembre, R., Micol, V., Mallavia, R., & Mateo, M. R. (2004). A ready-to-use fluorimetric biosensor for superoxide radical using superoxide dismutase and peroxidase immobilized in sol-gel glasses. Analytical Biochemistry, 334, 335–343. DOI: 10.1016/j.ab.2004.08.012. http://dx.doi.org/10.1016/j.ab.2004.08.01210.1016/j.ab.2004.08.012Suche in Google Scholar

[16] Prouillac, C., Vicendo, P., Garrigues, J. C., Poteau, R., & Rima, R. (2009). Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: Free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radical Biology and Medicine, 46, 1139–1148. DOI: 10.1016/j.freeradbiomed.2009.01.016. http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.01610.1016/j.freeradbiomed.2009.01.016Suche in Google Scholar

[17] Rea, G., Antonacci, A., Lambreva, M., Pastorelli, S., Tibuzzi, A., Ferrari, S., Fischer, D., Johanningmeier, U., Oleszek, W., Doroszewska, T., Rizzo, A. M., Berselli, P. V. R., Berra, B., Bertoli, A., Pistelli, L., Ruffoni, B., Calas-Blanchard, C., Marty, J. L., Litescu, S. C., Diaconu, M., Touloupakis, E., Ghaanotakis, D., & Giardi, M. T. (2011). Integrated plant biotechnologies applied to safer and healtier food production: The Nutra-Snack manufacturilg chain. Trends in Food & Technology, 22, 353–366. DOI: 10.1016/j.tifs.2011.04.005. http://dx.doi.org/10.1016/j.tifs.2011.04.00510.1016/j.tifs.2011.04.005Suche in Google Scholar

[18] Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81, 215S–217S. 10.1093/ajcn/81.1.215SSuche in Google Scholar

[19] Shekarchi, M., Hajimehdipoor, H., Saeidnia, S., Gohari, A. R., & Hamedani, M. P. (2012). Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacognosy Magazine, 8(29), 37–41. DOI: 10.4103/0973-1296.93316. http://dx.doi.org/10.4103/0973-1296.9331610.4103/0973-1296.93316Suche in Google Scholar

[20] Tache, A., Cotrone, S., Litescu, S. C., Cioffi, N., Torsi, L., Sabbatini, L., & Radu, G. L. (2011a). Spectrochemical characterization of thin layers of lipoprotein self-assembled films on solid supports under oxidation process. Analytical Letters, 44, 747–760. DOI: 10.1080/00032711003790098. http://dx.doi.org/10.1080/0003271100379009810.1080/00032711003790098Suche in Google Scholar

[21] Tache, A., Litescu, S. C., & Radu, L. G. (2011b). Spectroscopic studies on lipoprotein structure modification under oxidative stress. Spectroscopy, 26, 167–178. DOI: 10.3233/spe-2011-0533. Suche in Google Scholar

[22] Tallineau, C., Pontcharraud, R., Guettier, A., & Piriou, A. (1992). Cu(2+)-induced lipid oxidation in plasma: questionable relation between cholesterol oxidation and LDL modification. Biochemistry International, 27, 983–990. Suche in Google Scholar

[23] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009. http://dx.doi.org/10.1016/j.cbi.2005.12.00910.1016/j.cbi.2005.12.009Suche in Google Scholar

[24] Volin, P. (2001). Analysis of steroidal lipids by gas and liquid chromatography. Journal of Chromatography A, 935, 125–140. DOI: 10.1016/s0021-9673(01)01089-5. http://dx.doi.org/10.1016/S0021-9673(01)01089-510.1016/S0021-9673(01)01089-5Suche in Google Scholar

[25] Wilson, R., Smith, R., Wilson, P., Shepherd, M. J., & Riemersma, R. A. (1997). Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxyl fatty acids in biological samples and food as a marker of lipid peroxidation. Analytical Biochemistry, 248, 76–85. DOI: 10.1006/abio.1997.2084. http://dx.doi.org/10.1006/abio.1997.208410.1006/abio.1997.2084Suche in Google Scholar PubMed

Published Online: 2012-9-13
Published in Print: 2012-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0233-4/pdf
Button zum nach oben scrollen