Abstract
The structural, energetic, and thermochemical properties of a number of halogenated nitromethanes, CHnX3−n NO2, and the isomeric nitrites, CHnX3−n ONO, are investigated, using theoretical ab initio and density functional theory (DFT) electronic structure methods. Analysis of the results and comparison with the maternal species, nitromethane, CH3NO2, and methyl nitrite, CH3ONO, reveal strong dependence of the molecular properties on the halogen induction effect. Opposite trends are obtained in the C—N and C—O bond dissociation energies (BDE) upon halogenation and higher stabilities are calculated for the trans-nitrite isomers, in contrast with the plain alkyl families where the nitroalkanes are the most stable species. Formation enthalpies, ΔH fℴ, at 298 K are calculated for all halogenated isomers.
[1] Asatryan, R., Bozzelli, J. W., & Simmie, J. M. (2008). Thermochemistry of methyl and ethyl nitro, RNO2, and nitrite, RONO, organic compounds. Journal of Physical Chemistry A, 112, 3172–3185. DOI: 10.1021/jp710960u. http://dx.doi.org/10.1021/jp710960u10.1021/jp710960uSearch in Google Scholar
[2] Barss, W. M. (1957). Structure of gaseous chloropicrin as determined by electron diffraction. Journal of Chemical Physics, 27, 1260–1267. DOI: 10.1063/1.1743987. http://dx.doi.org/10.1063/1.174398710.1063/1.1743987Search in Google Scholar
[3] Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuss, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80, 1431–1441. DOI: 10.1080/00268979300103121. http://dx.doi.org/10.1080/0026897930010312110.1080/00268979300103121Search in Google Scholar
[4] Bull, J. N., Maclagan, R. G. A. R., & Harland, P. W. (2010). On the electron affinity of nitromethane (CH3NO2). Journal of Physical Chemistry A, 114, 3622–3629. DOI: 10.1021/jp9113317. http://dx.doi.org/10.1021/jp911331710.1021/jp9113317Search in Google Scholar
[5] Cox, A. P., & Waring, S. (1972). Microwave spectrum and structure of nitromethane. Journal of Chemical Society Faraday Transactions 2,68, 1060–1071. DOI: 10.1039/f29726801060. 10.1039/f29726801060Search in Google Scholar
[6] Curtiss, L. A., Raghavachari, K., & Pople, J. A. (1993). Gaussian-2 theory using reduced Møller-Plesset orders. Journal of Chemical Physics, 98, 1293–1298, DOI: 10.1063/1.464297. http://dx.doi.org/10.1063/1.46429710.1063/1.464297Search in Google Scholar
[7] Dean, A. M., & Bozzelli, J. W. (1999). Combustion chemistry of nitrogen. In W. C. Gardiner, Jr. (Ed.), Gas-phase combustion chemistry (pp. 125–342). New York, NY, USA: Springer. Search in Google Scholar
[8] Denis, P. A., Ventura, O. N., Le, H. T., & Nguyen, M. T. (2003). Density functional study of the decomposition pathways of nitroethane and 2-nitropropane. Physical Chemistry Chemical Physics, 5, 1730–1738. DOI: 10.1039/b300275f. http://dx.doi.org/10.1039/b300275f10.1039/b300275fSearch in Google Scholar
[9] Foresman, J. B., & Frisch, A. (1996). Exploring chemistry with electronic structure methods (2nd ed.). Pittsburgh, PA, USA: Gaussian Inc. Search in Google Scholar
[10] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, K. R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, V. C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavashari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, J. L., Gonzalez, C., & Pople, J. (2004). Gaussian 03 [computer software]. Wallingford, CT, USA: Gaussian Inc. Search in Google Scholar
[11] Harland, P. W., & Brooks, P. R. (2010). Crossed-beam studies of electron transfer to oriented trichloronitromethane, CCl3NO2, molecules. Journal of Chemical Physics, 132, 044307. DOI: 10.1063/1.3299280. http://dx.doi.org/10.1063/1.329928010.1063/1.3299280Search in Google Scholar
[12] Jursic, B. S. (1997). Computation of geometries and frequencies of singlet and triplet nitromethane with density functional theory using Gaussian-type orbitals. International Journal of Quantum Chemistry, 64, 263–269. DOI: 10.1002/(SICI)1097-461X(1997)64:2<263::AID-QUA15>3.0.CO;2-A. http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:2<263::AID-QUA15>3.0.CO;2-A10.1002/(SICI)1097-461X(1997)64:2<263::AID-QUA15>3.0.CO;2-ASearch in Google Scholar
[13] Kirkham Cole, S., Cooper, W. J., Fox, R. V., Gardinali, P. R., Mezyk, S. P., Mincher, B. J., & O’shea, K. E. (2007). Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (Chloropicrin). Environmental Science & Technology, 41, 863–869. DOI: 10.1021/es061410b. http://dx.doi.org/10.1021/es061410b10.1021/es061410bSearch in Google Scholar
[14] Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, N. I., Onstad, G. D., & Thurston, A. D., Jr. (2006). Occurrence of a new generation of disinfection byproducts. Environmntal Science & Technology, 40, 7175–7185. DOI: 10.1021/es060353j. http://dx.doi.org/10.1021/es060353j10.1021/es060353jSearch in Google Scholar
[15] Lu, N., & Thrasher, J. S. (2002). The direct synthesis of trifluoronitromethane, CF3NO2. Journal of Fluorine Chemistry, 117, 181–184. DOI: 10.1016/s0022-1139(02)00183-5. http://dx.doi.org/10.1016/S0022-1139(02)00183-510.1016/S0022-1139(02)00183-5Search in Google Scholar
[16] Luo, Y. R. (2003). Handbook of bond dissociation energies in inorganic compounds. Boca Raton, FL, USA: CRC Press. Search in Google Scholar
[17] Marshall, P., Srinivas, G. N., & Schwartz, M. (2005). A computational study of the thermochemistry of bromine- and iodine-containing methanes and methyl radicals. Journal of Physical Chemistry A, 109, 6371–6379. DOI: 10.1021/jp0518052. http://dx.doi.org/10.1021/jp051805210.1021/jp0518052Search in Google Scholar
[18] Mezyk, S. P., Helgeson, T., Kirkham Cole, S., Cooper, W. J., Fox, R. V., Gardinali, P. R., & Mincher, B. J. (2006). Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. Journal of Physical Chemistry A, 110, 2176–2180. DOI: 10.1021/jp054962+. http://dx.doi.org/10.1021/jp054962+10.1021/jp054962+Search in Google Scholar
[19] Mincher, B. J., Mezyk, S. P., Cooper, W. J., Kirkham Cole, S., Fox, R. V., & Gardinali, P. R., (2010). Free radical chemistry of disinfection-byproducts. 3. Degradation mechanisms of chloronitromethane, bromonitromethane, and dichloronitromethane. Journal of Physical Chemistry A, 114, 117–125. DOI: 10.1021/jp907305g. http://dx.doi.org/10.1021/jp907305g10.1021/jp907305gSearch in Google Scholar
[20] Munakata, H., Kakumoto, T., & Baker, J. (1997). An MP2 and density functional study of the oxides of nitrogen. Journal of Molecular Structure: THEOCHEM, 391, 231–240. DOI: 10.1016/s0166-1280(96)04788-4. http://dx.doi.org/10.1016/S0166-1280(96)04788-410.1016/S0166-1280(96)04788-4Search in Google Scholar
[21] Pagsberg, P., Jodkowski, J. T., Ratajczak, E., & Sillesen, A. (1998). Experimental and theoretical studies of the reaction between CF3 and NO2 at 298 K. Chemical Physics Letters, 286, 138–144, DOI: 10.1016/s0009-2614(98)00074-8. http://dx.doi.org/10.1016/S0009-2614(98)00074-810.1016/S0009-2614(98)00074-8Search in Google Scholar
[22] Pauling, L. (1932). The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. Journal of the American Chemical Society, 54, 3570–3582. DOI: 10.1021/ja01348a011. http://dx.doi.org/10.1021/ja01348a01110.1021/ja01348a011Search in Google Scholar
[23] Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. H., & McKague, A. B. (2004). Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environmental Science & Technology, 38, 62–68. DOI: 10.1021/es030477l. http://dx.doi.org/10.1021/es030477l10.1021/es030477lSearch in Google Scholar PubMed
[24] Riad Manaa, M., & Fried, L. E. (1998). DFT and ab initio study of the unimolecular decomposition of the lowest singlet and triplet states of nitromethane. Journal of Physical Chemistry A, 102, 9884–9889. DOI: 10.1021/jp982003s. http://dx.doi.org/10.1021/jp982003s10.1021/jp982003sSearch in Google Scholar
[25] Richardson, S. D. (2003). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 75, 2831–2857. DOI: 10.1021/ac0301301. http://dx.doi.org/10.1021/ac030130110.1021/ac0301301Search in Google Scholar
[26] Rosenberg, M., & Sølling, T. I. (2010). Computational investigation of photo induced processes in alkyl nitrites and the product alkoxy radicals. Chemical Physics Letters, 484, 113–118, DOI: 10.1016/j.cplett.2009.11.001. http://dx.doi.org/10.1016/j.cplett.2009.11.00110.1016/j.cplett.2009.11.001Search in Google Scholar
[27] Sander, S. P., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L. (2006). Chemical kinetics and photochemical data for use in Atmospheric Studies Evaluation Number 15. Pasadena, CA, USA: Jet Propulsion Laboratory, National Aeronautics and Space Administration. (JPL Publication 06-2) Search in Google Scholar
[28] Schwartz, M., Peebles, L. R., Berry, R. J., & Marshall, P. (2003). A computational study of chlorofluoro-methyl radicals. Journal of Chemical Physics, 118, 557–565. DOI: 10.1063/1.1524157. http://dx.doi.org/10.1063/1.152415710.1063/1.1524157Search in Google Scholar
[29] Shao, J. X., Cheng, X. L., & Yang, X. D. (2005). Calculations of the bond dissociation energies for NO2 scission in some nitro compounds. Structural Chemistry, 16, 457–460. DOI: 10.1007/s11224-005-4334-3. http://dx.doi.org/10.1007/s11224-005-4334-310.1007/s11224-005-4334-3Search in Google Scholar
[30] Shen, Q., Brown, J. W., Malona, J. A., Cochran, J. C., & Richardson, A. D. (2006). Molecular structure and conformation of chloronitromethane as determined by gas-phase electron diffraction and theoretical calculations. Journal of Physical Chemistry A, 110, 7491–7495. DOI: 10.1021/jp061100f. http://dx.doi.org/10.1021/jp061100f10.1021/jp061100fSearch in Google Scholar
[31] Temussi, P. A., & Tancredi, T. (1968). The mechanism of isomerization of methyl nitrite. Journal of Physical Chemistry, 72, 3581–3583. DOI: 10.1021/j100856a039. http://dx.doi.org/10.1021/j100856a03910.1021/j100856a039Search in Google Scholar
[32] Turner, P. H., Corkill, M. J., & Cox, A. P. (1979). Microwave spectra and structures of cis- and transmethyl nitrite. Methyl barrier in trans-methyl nitrite. Journal of Physical Chemistry, 83, 1473–1482. DOI: 10.1021/j100474a023. 10.1021/j100474a023Search in Google Scholar
[33] Ventura, O. N., Saenz-Méndez, P., & Bottinelli, F. (2011). Computational study on the partial dechlorination of the pesticide chloropicrin by sulfur species. Theoretical Chemistry Accounts, 130, 955–963. DOI: 10.1007/s00214-011-1057-y. http://dx.doi.org/10.1007/s00214-011-1057-y10.1007/s00214-011-1057-ySearch in Google Scholar
[34] Wade, E. A., Reak, K. E., Parsons, B. F., Clemes, T. P., & Singmaster, K. A. (2002). Photochemistry of chloropicrin in cryogenic matrices. Chemical Physics Letters, 365, 473–479. DOI: 10.1016/s0009-2614(02)01495-1. http://dx.doi.org/10.1016/S0009-2614(02)01495-110.1016/S0009-2614(02)01495-1Search in Google Scholar
[35] Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. Journal of Chemical Physics, 82, 284–298. DOI: 10.1063/1.448800. http://dx.doi.org/10.1063/1.44880010.1063/1.448800Search in Google Scholar
[36] Zhu, R. S., & Lin, M. C. (2009). CH3NO2 decomposition/isomerization mechanism and product branching ratios: An ab initio chemical kinetic study. Chemical Physics Letters, 478, 11–16. DOI: 10.1016/j.cplett.2009.07.034. http://dx.doi.org/10.1016/j.cplett.2009.07.03410.1016/j.cplett.2009.07.034Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations
- Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
- Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate
- Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D
- Electrodialysis of oxalic acid: batch process modeling
- Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing
- Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
- Fabrication of a micro-direct methanol fuel cell using microfluidics
- Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements
- Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites
- Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins
Articles in the same Issue
- Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations
- Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
- Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate
- Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D
- Electrodialysis of oxalic acid: batch process modeling
- Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing
- Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
- Fabrication of a micro-direct methanol fuel cell using microfluidics
- Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements
- Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites
- Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins