Fabrication of a micro-direct methanol fuel cell using microfluidics
-
Chumphol Yunphuttha
, Win Bunjongpru
, Supanit Porntheeraphat , Atchana Wongchaisuwat , Charndet Hruanun , Amporn Poyai und Pinsuda Viravathana
Abstract
A direct-methanol fuel cell containing three parts: microchannels, electrodes, and a proton exchange membrane (PEM), was investigated. Nafion resin (NR) and polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (PS) were used as PEMs. Preparation of PEMs, including compositing with other polymers and their solubility, was performed and their proton conductivity was measured by a four point probe. The results showed that the 5 % Nafion resin has lower conductivity than the 5 % PS solution. The micro-fuel cell contained two acrylic channels, PEM, and two platinum catalyst electrodes on a silicon wafer. The assembled micro-fuel cells used 2 M methanol at the flow rate of 1.5 mL min−1 in the anode channel and 5 × 10−3 M KMnO4 at the flow rate of 1.5 mL min−1 in the cathode channel. The micro-fuel cell with the electrode distance of 300 μm provided the power density of 59.16 μW cm−2 and the current density of 125.60 μA cm−2 at 0.47 V.
[1] Chen, F., Chang, M. H., & Lin, H. Y. (2008). Analysis of a novel MEMS-based design of micro-direct methanol fuel cell. Journal of Power Sources, 178, 125–131. DOI: 10.1016/j.jpowsour.2007.12.048. http://dx.doi.org/10.1016/j.jpowsour.2007.12.04810.1016/j.jpowsour.2007.12.048Suche in Google Scholar
[2] Choban, E. R., Markoski, L. J., Wieckowski, A., & Kenis, P. J. A. (2004). Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 128, 54–60. DOI: 10.1016/j.jpowsour.2003.11.052. http://dx.doi.org/10.1016/j.jpowsour.2003.11.05210.1016/j.jpowsour.2003.11.052Suche in Google Scholar
[3] Choban, E. R., Spendelow, J. S., Gancs, L., Wieckowski, A., & Kenis, P. J. A. (2005). Membraneless laminar flowbased micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochimica Acta, 50, 5390–5398. DOI: 10.1016/j.electacta.2005.03.019. http://dx.doi.org/10.1016/j.electacta.2005.03.01910.1016/j.electacta.2005.03.019Suche in Google Scholar
[4] Hogarth, M. P., & Hards, G. A. (1996). Direct methanol fuel cells technological advances and further requirements. Platinum Metals Review, 40, 150–159. Suche in Google Scholar
[5] Kamarudin, S. K., Daud, W. R. W., Ho, S. L., & Hasran, U. A. (2007). Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). Journal of Power Sources, 163, 743–754. DOI: 10.1016/j.jpowsour.2006.09.081. http://dx.doi.org/10.1016/j.jpowsour.2006.09.08110.1016/j.jpowsour.2006.09.081Suche in Google Scholar
[6] Kamitani, A., Morishita, S., Kotaki, H., & Arscott, S. (2008). Miniaturized microDMFC using silicon microsystems techniques: performances at low fuel flow rates. Journal of Micromechanics and Microengineering, 18, 125019. DOI: 10.1088/0960-1317/18/12/125019. http://dx.doi.org/10.1088/0960-1317/18/12/12501910.1088/0960-1317/18/12/125019Suche in Google Scholar
[7] Kamitani, A., Morishita, S., Kotaki, H., & Arscott, S. (2009). Improved fuel use efficiency in microchannel direct methanol fuel cells using a hydrophilic macroporous layer. Journal of Power Sources, 187, 148–155. DOI: 10.1016/j.jpowsour.2008. 10.085. http://dx.doi.org/10.1016/j.jpowsour.2008.10.08510.1016/j.jpowsour.2008.10.085Suche in Google Scholar
[8] Kim, J., Kim, B., & Jung, B. (2002). Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethyleneran-butylene)-block-polystyrene copolymers. Journal of Membrane Science, 207, 129–137. DOI: 10.1016/s0376-7388(02) 00138-2. http://dx.doi.org/10.1016/S0376-7388(02)00138-210.1016/S0376-7388(02)00138-2Suche in Google Scholar
[9] Kim, H. K., & Chang, H. (2007). Organic/inorganic hybrid membranes for direct methanol fuel cells. Journal of Membrane Science, 288, 188–194. DOI: 10.1016/j.memsci.2006.11.038. http://dx.doi.org/10.1016/j.memsci.2006.11.03810.1016/j.memsci.2006.11.038Suche in Google Scholar
[10] Kim, S. H., Cha, H. Y., Miesse, C. M., Jang, J. H., Oh, Y. S., & Cha, S. W. (2009). Air-breathing miniature planar stack using the flexible printed circuit board as a current collector. International Journal of Hydrogen Energy, 34, 459–466. DOI: 10.1016/j.ijhydene.2008.09.088. http://dx.doi.org/10.1016/j.ijhydene.2008.09.08810.1016/j.ijhydene.2008.09.088Suche in Google Scholar
[11] Kjeang, E., McKechnie, J., Sinton, D., & Djilali, N. (2007). Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. Journal of Power Sources, 168, 379–390. DOI: 10.1016/j.jpowsour.2007.02.087. http://dx.doi.org/10.1016/j.jpowsour.2007.02.08710.1016/j.jpowsour.2007.02.087Suche in Google Scholar
[12] Kjeang, E., Djilali, N., & Sinton, D. (2009). Microfluidic fuel cells: A review. Journal of Power Sources, 186, 353–369. DOI: 10.1016/j.jpowsour.2008.10.011. http://dx.doi.org/10.1016/j.jpowsour.2008.10.01110.1016/j.jpowsour.2008.10.011Suche in Google Scholar
[13] Kobayashi, T., Otomo, J., Wen, C. J., & Takahashi, H. (2003). Direct alcohol fuel cell—relation between the cell performance and the adsorption of intermediate originating in the catalyst-fuel combinations. Journal of Power Sources, 124, 34–39. DOI: 10.1016/s0378-7753(03)00622-0. http://dx.doi.org/10.1016/S0378-7753(03)00622-010.1016/S0378-7753(03)00622-0Suche in Google Scholar
[14] Lan, A., & Mukasyan, A. S. (2007). Perovskite-based catalysts for direct methanol fuel cells. The Journal of Physical Chemistry C, 111, 9573–9582. DOI: 10.1021/jp067343p. http://dx.doi.org/10.1021/jp067343p10.1021/jp067343pSuche in Google Scholar
[15] Lee, S. J., Yu, T. L., Lin, H. L., Liu, W. H., & Lai, C. L. (2004). Solution properties of nafion in methanol/water mixture solvent. Polymer, 45, 2853–2862. DOI: 10.1016/j.polymer.2004. 01.076. http://dx.doi.org/10.1016/j.polymer.2004.01.07610.1016/j.polymer.2004.01.076Suche in Google Scholar
[16] Lim, S. W., Kim, S. W., Kim, H. J., Ahn, J. E., Han, H. S., & Shul, Y. G. (2006). Effect of operation parameters on performance of micro direct methanol fuel cell fabricated on printed circuit board. Journal of Power Sources, 161, 27–33. DOI: 10.1016/j.jpowsour.2006.03.091. http://dx.doi.org/10.1016/j.jpowsour.2006.03.09110.1016/j.jpowsour.2006.03.091Suche in Google Scholar
[17] Lima, A., Coutanceau, C., Léger, J. M., & Lamy, C. (2001). Investigation of ternary catalysts for methanol electrooxidation. Journal of Applied Electrochemistry, 31, 379–386. DOI: 10.1023/a:1017578918569. http://dx.doi.org/10.1023/A:101757891856910.1023/A:1017578918569Suche in Google Scholar
[18] López-Montesinos, P. O., Yossakda, N., Schmidt, A., Brushett, F. R., Pelton, W. E., & Kenis, P. J. A. (2011). Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. Journal of Power Sources, 196, 4638–4645. DOI: 10.1016/j.jpowsour.2011.01.037. http://dx.doi.org/10.1016/j.jpowsour.2011.01.03710.1016/j.jpowsour.2011.01.037Suche in Google Scholar
[19] Ma, C. H., Yu, T. L., Lin, H. L., Huang, Y. T., Chen, Y. L., Jeng, U. S., Lai, Y. H., & Sun, Y. S. (2009). Morphology and properties of Nafion membranes prepared by solution casting. Polymer, 50, 1764–1777. DOI: 10.1016/j.polymer.2009.01.060. http://dx.doi.org/10.1016/j.polymer.2009.01.06010.1016/j.polymer.2009.01.060Suche in Google Scholar
[20] Motokawa, S., Mohamedi, M., Momma, T., Shoji, S., & Osaka, T. (2004). MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC). Electrochemistry Communications, 6, 562–565. DOI: 10.1016/j.elecom.2004.04.007. http://dx.doi.org/10.1016/j.elecom.2004.04.00710.1016/j.elecom.2004.04.007Suche in Google Scholar
[21] Nam, S. E., Kim, S. O., Kang, Y., Lee, J. W., & Lee, K. H. (2008). Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes. Journal of Membrane Science, 322, 466–474. DOI: 10.1016/j.memsci.2008.05.075. http://dx.doi.org/10.1016/j.memsci.2008.05.07510.1016/j.memsci.2008.05.075Suche in Google Scholar
[22] Ramya, K., Velayutham, G., Subramaniam, C. K., Rajalakshmi, N., & Dhathathreyan, K. S. (2006). Effect of solvents on the characteristics of Nafion/RR/PTFE composite membranes for fuel cell applications. Journal of Power Sources, 160, 10–17. DOI: 10.1016/j.memsci.2008.05.075. http://dx.doi.org/10.1016/j.jpowsour.2005.12.08210.1016/j.memsci.2008.05.075Suche in Google Scholar
[23] Salloum, K. S., Hayes, J. R., Friesen, C. A., & Posner, J. D. (2008). Sequential flow membraneless microfluidic fuel cell with porous electrodes. Journal of Power Sources, 180, 243–252. DOI: 10.1016/j.jpowsour.2007.12.116. http://dx.doi.org/10.1016/j.jpowsour.2007.12.11610.1016/j.jpowsour.2007.12.116Suche in Google Scholar
[24] Salloum, K. S., & Posner, J. D. (2011). A membraneless microfluidic fuel cell stack. Journal of Power Sources, 196, 1229–1234. DOI: 10.1016/j.jpowsour.2010.08.069. http://dx.doi.org/10.1016/j.jpowsour.2010.08.06910.1016/j.jpowsour.2010.08.069Suche in Google Scholar
[25] Schrott, W., Nebyla, M., Meisterová, L., & Přibyl, M. (2011). Fast ferritin immunoassay on PDMS microchips. Chemical Papers, 65, 246–250. DOI: 10.2478/s11696-010-0079-6. http://dx.doi.org/10.2478/s11696-010-0079-610.2478/s11696-010-0079-6Suche in Google Scholar
[26] Shah, K., Shin, W. C., & Besser, R. S. (2004). A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques. Sensors and Actuators B: Chemical, 97, 157–167. DOI: 10.1016/j.snb.2003.08.008. http://dx.doi.org/10.1016/j.snb.2003.08.00810.1016/j.snb.2003.08.008Suche in Google Scholar
[27] Shen, M., Walter, S., & Gijs, M. A. M. (2009). Monolithic microdirect methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip. Journal of Power Sources, 193, 761–765. DOI: 10.1016/j.jpowsour.2009.03.055. http://dx.doi.org/10.1016/j.jpowsour.2009.03.05510.1016/j.jpowsour.2009.03.055Suche in Google Scholar
[28] Shoji, M., Oyaizu, K., & Nishide, H. (2008). Facilitated oxygen transport through a Nafion membrane containing cobaltporphyrin as a fixed oxygen carrier. Polymer, 49, 5659–5664. DOI: 10.1016/j.polymer.2008.10.016. http://dx.doi.org/10.1016/j.polymer.2008.10.01610.1016/j.polymer.2008.10.016Suche in Google Scholar
[29] Song, Y. A., Batista, C., Sarpeshkar, R., & Han, J. (2008). Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin. Journal of Power Sources, 183, 674–677. DOI: 10.1016/j.jpowsour.2008.05.085. http://dx.doi.org/10.1016/j.jpowsour.2008.05.08510.1016/j.jpowsour.2008.05.085Suche in Google Scholar
[30] Sun, M. H., Casquillas, G. V., Guo, S. S., Shi, J., Ji, H., Ouyang, Q., & Chen, Y. (2007). Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering, 84, 1182–1185. DOI: 10.1016/j.mee.2007.01.175. http://dx.doi.org/10.1016/j.mee.2007.01.17510.1016/j.mee.2007.01.175Suche in Google Scholar
[31] Sung, W., & Choi, J. W. (2007). A membraneless microscale fuel cell using non-noble catalysts in alkaline solution. Journal of Power Sources, 172, 198–208. DOI: 10.1016/j.jpowsour.2007.07.012. http://dx.doi.org/10.1016/j.jpowsour.2007.07.01210.1016/j.jpowsour.2007.07.012Suche in Google Scholar
[32] Yang, W. M., Chou, S. K., & Shu, C. (2007). Effect of currentcollector structure on performance of passive micro direct methanol fuel cell. Journal of Power Sources, 164, 549–554. DOI: 10.1016/j.jpowsour.2006.11.014. http://dx.doi.org/10.1016/j.jpowsour.2006.11.01410.1016/j.jpowsour.2006.11.014Suche in Google Scholar
[33] You, S., Zhao, Q., Zhang, J., Jiang, J., & Zhao, S. (2006). A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources, 162, 1409–1415. DOI: 10.1016/j.jpowsour.2006.07.063. http://dx.doi.org/10.1016/j.jpowsour.2006.07.06310.1016/j.jpowsour.2006.07.063Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations
- Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
- Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate
- Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D
- Electrodialysis of oxalic acid: batch process modeling
- Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing
- Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
- Fabrication of a micro-direct methanol fuel cell using microfluidics
- Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements
- Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites
- Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins
Artikel in diesem Heft
- Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations
- Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
- Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate
- Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D
- Electrodialysis of oxalic acid: batch process modeling
- Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing
- Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
- Fabrication of a micro-direct methanol fuel cell using microfluidics
- Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements
- Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites
- Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins