Startseite Lebenswissenschaften Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats

  • Pavlina Sobrova EMAIL logo , Anna Vasatkova , Jiri Skladanka , Miroslava Beklova , Ladislav Zeman , Rene Kizek und Vojtech Adam
Veröffentlicht/Copyright: 13. September 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Deoxynivalenol (DON, vomitoxin) is one of several human mycotoxins acquired through residues in foods of plant origin (cereals) and through foods of animal origin (kidneys, liver, milk, eggs). The aim of this study was to investigate the impact of deoxynivalenol-contaminated mouldy grain on the health status of rats and their ability to resist oxidative stress. The rats were fed a diet supplemented with DON along with organic and inorganic Zn(II), and vitamins for 28 days. The study focuses particularly on protective mechanisms and levels of reduced glutathione and metallothioneins (MT) against the adverse effects of xenobiotics. The highest concentrations of MT were detected in the tissues of kidneys ((6.70 ± 0.05) μg g−1) and liver ((6.00 ± 0.05) μg g−1), both of which are involved in detoxifying cationic xenobiotics. Lower concentrations were also detected in heart, brain, testes, and muscle tissues (approximately 3.0 μg g−1). Antioxidant capacity, glutathione-S-transferase, and liver enzymes activity were also studied. In conclusion, MT may play an important role in the detoxification of mycotoxins. Even though its role is not fully understood, MT are crucial for the redistribution of ions important for transcription factors and interaction with reactive oxygen species that form mycotoxins.

[1] Adam, V., Beklova, M., Pikula, J., Hubalek, J., Trnkova, L., & Kizek, R. (2007). Shapes of differential pulse voltammograms and level of metallothionein at different animal species. Sensors, 7, 2419–2429. DOI: 10.3390/s7102419. http://dx.doi.org/10.3390/s710241910.3390/s7102419Suche in Google Scholar PubMed PubMed Central

[2] Adam, V., Fabrik, I., Eckschlager, T., Stiborova, M., Trnkova, L., & Kizek, R. (2010a). Vertebrate metallothioneins as target molecules for analytical techniques. TrAC-Trends in Analytical Chemistry, 29, 409–418. DOI: 10.1016/j.trac.2010.02.004. http://dx.doi.org/10.1016/j.trac.2010.02.00410.1016/j.trac.2010.02.004Suche in Google Scholar

[3] Adam, V., Petrlova, J., Wang, J., Eckschlager, T., Trnkova, L., & Kizek, R. (2010b). Zeptomole electrochemical detection of metallothioneins. PLoS ONE 5, E11441. DOI: 10.1371/journal.pone.0011441. http://dx.doi.org/10.1371/journal.pone.001144110.1371/journal.pone.0011441Suche in Google Scholar PubMed PubMed Central

[4] Borutova, R., Faix, S., Placha, I., Gresakova, L., Cobanova, K., & Leng, L. (2008). Effects of deoxynivalenol and zearalenone on oxidative stress and blood phagocytic activity in broilers. Archives of Animal Nutrition, 62, 303–312. DOI: 10.1080/17450390802190292. http://dx.doi.org/10.1080/1745039080219029210.1080/17450390802190292Suche in Google Scholar PubMed

[5] Capdevila, M., Bofill, R., Palacios, Ñ., & Atrian, S. (2012). State-of-the-art of metallothioneins at the beginning of the 21st century. Coordination Chemistry Reviews, 256, 46–62. DOI: 10.1016/j.ccr.2011.07.006. http://dx.doi.org/10.1016/j.ccr.2011.07.00610.1016/j.ccr.2011.07.006Suche in Google Scholar

[6] Das, N., Dash, B., Dhanawat, M., & Shrivastava, S. K. (2012). Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives. Chemical Papers, 66, 67–74. DOI: 10.2478/s11696-011-0106-2. http://dx.doi.org/10.2478/s11696-011-0106-210.2478/s11696-011-0106-2Suche in Google Scholar

[7] Debouck, C., Haubruge, E., Bollaerts, P., Van Bignoot, D., Brostaux, Y., Werry, A., & Rooze, M. (2001). Skeletal deformities induced by the intraperitoneal administration of deoxynivalenol (vomitoxin) in mice. International Orthopaedics, 25, 194–198. DOI: 10.1007/s002640100235. http://dx.doi.org/10.1007/s00264010023510.1007/s002640100235Suche in Google Scholar PubMed PubMed Central

[8] Desmond, O. J., Manners, J. M., Stephens, A. E., Maclean, D. J., Schenk, P. M., Gardiner, D. M., Munn, A. L., & Kazan, K. (2008). The fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Molecular Plant Pathology, 9, 435–445. DOI: 10.1111/j.1364-3703.2008.00475.x. http://dx.doi.org/10.1111/j.1364-3703.2008.00475.x10.1111/j.1364-3703.2008.00475.xSuche in Google Scholar PubMed PubMed Central

[9] Doohan, F., Arunachalam, C., Jiang, S., Khan, M., Egan, D., Erard, G., & Walter, S. (2008). The wheat response to deoxynivalenol: does maintenance of hormone homeostasis and alleviation of oxidative stress play an important role in toxin tolerance? Cereal Research Communications, 36, 233–237. DOI: 10.1556/CRC.36.2008.Suppl.B.20. http://dx.doi.org/10.1556/CRC.36.2008.Suppl.B.2010.1556/CRC.36.2008.Suppl.B.20Suche in Google Scholar

[10] Eckschlager, T., Adam, V., Hrabeta, J., Figova, K., & Kizek, R. (2009). Metallothioneins and cancer. Current Protein & Peptide Science, 10, 360–375. http://dx.doi.org/10.2174/13892030978892224310.2174/138920309788922243Suche in Google Scholar PubMed

[11] Fabrik, I., Krizkova, S., Huska, D., Adam, V., Hubalek, J., Trnkova, L., Eckschlager, T., Kukacka, J., Prusa, R., & Kizek, R. (2008a). Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis, 20, 1521–1532. DOI: 10.1002/elan.200704215. http://dx.doi.org/10.1002/elan.20070421510.1002/elan.200704215Suche in Google Scholar

[12] Fabrik, I., Svobodova, Z., Adam, V., Krizkova, S., Trnkova, L., Beklova, M., Rodina, M., & Kizek, R. (2008b). Metallothionein levels in sperm of various fish species. Journal of Applied Ichthyology, 24, 522–525. DOI: 10.1111/j.1439-0426.2008.01132.x. http://dx.doi.org/10.1111/j.1439-0426.2008.01132.x10.1111/j.1439-0426.2008.01132.xSuche in Google Scholar

[13] Gopal, D. V., & Rosen, H. R. (2000). Abnormal findings on liver function tests. Interpreting results to narrow the diagnosis and establish a prognosis. Postgraduate Medicine, 107, 100–114. DOI: 10.3810/pgm.2000.02.869. http://dx.doi.org/10.3810/pgm.2000.02.86910.3810/pgm.2000.02.869Suche in Google Scholar PubMed

[14] Huska, D., Krizkova, S., Beklova, M., Havel, L., Zehnalek, J., Diopan, V., Adam, V., Zeman, L., Babula, P., & Kizek, R. (2008). Influence of cadmium(ii) ions and brewery sludge on metallothionein level in earthworms (Eisenia fetida) — Biotransforming of toxic wastes. Sensors, 8, 1039–1047. DOI: 10.3390/s8021039. http://dx.doi.org/10.3390/s802103910.3390/s8021039Suche in Google Scholar PubMed PubMed Central

[15] Krishnaswamy, R., Devaraj, S. N., & Padma, V. V. (2010). Lutein protects HT-29 cells against deoxynivalenol-induced oxidative stress and apoptosis: Prevention of NF-κB nuclear localization and down regulation of NF-κB and cyclooxygenase 2 expression. Free Radical Biology and Medicine, 49, 50–60. DOI: 10.1016/j.freeradbiomed.2010.03.016. http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.01610.1016/j.freeradbiomed.2010.03.016Suche in Google Scholar PubMed

[16] Krizkova, S., Zitka, O., Adam, V., Beklova, M., Horna, A., Svobodova, Z., Sures, B., Trnkova, L., Zeman, L., & Kizek, R. (2007). Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues. Czech Journal of Animal Science, 52, 143–148. 10.17221/2232-CJASSuche in Google Scholar

[17] Krizkova, S., Adam, V., Eckschlager, T., & Kizek, R. (2009a). Using of chicken antibodies for metallothionein detection in human blood serum and cadmium-treated tumour cell lines after dot- and electroblotting. Electrophoresis, 30, 3726–3735. DOI: 10.1002/elps.200900201. http://dx.doi.org/10.1002/elps.20090020110.1002/elps.200900201Suche in Google Scholar PubMed

[18] Krizkova, S., Blahova, P., Nakielna, J., Fabrik, I., Adam, V., Eckschlager, T., Beklova, M., Svobodova, Z., Horak, V., & Kizek, R. (2009b). Comparison of metallothionein detection by using Brdicka reaction and enzyme-linked immunosorbent assay employing chicken yolk antibodies. Electroanalysis, 21, 2575–2583. DOI: 10.1002/elan.200900243. http://dx.doi.org/10.1002/elan.20090024310.1002/elan.200900243Suche in Google Scholar

[19] Krizkova, S., Fabrik, I., Adam, V., Hrabeta, J., Eckschlager, T., & Kizek, R. (2009c). Metallothionein — a promising tool for cancer diagnostics. Bratislava Medical Journal, 110, 93–97. Suche in Google Scholar

[20] Krizkova, S., Masarik, M., Majzlik, P., Kukacka, J., Kruseova, J., Adam, V., Prusa, R., Eckschlager, T., Stiborova, M., & Kizek, R. (2010). Serum metallothionein in newly diagnosed patients with childhood solid tumours. Acta Biochimica Polonica, 57, 561–566. 10.18388/abp.2010_2444Suche in Google Scholar

[21] Kushiro, M. (2008). Effects of milling and cooking processes on the deoxynivalenol content in wheat. International Journal of Molecular Sciences, 9, 2127–2145. DOI: 10.3390/ijms9112127. http://dx.doi.org/10.3390/ijms911212710.3390/ijms9112127Suche in Google Scholar PubMed PubMed Central

[22] Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature, 227, 680–685. DOI: 10.1038/227680a0. http://dx.doi.org/10.1038/227680a010.1038/227680a0Suche in Google Scholar

[23] Lengyel, I., Flinn, J. M., Petö, T., Linkous, D. H., Cano, K., Bird, A. C., Lanzirotti, A., Frederickson, C. J., & Van Kuijk, F. J. G. M. (2007). HHigh concentration of zinc in sub-retinal pigment epithelial deposits. Experimental Eye Research, 84, 772–780. DOI: 10.1016/j.exer.2006.12.015. http://dx.doi.org/10.1016/j.exer.2006.12.01510.1016/j.exer.2006.12.015Suche in Google Scholar

[24] Li, S., Ouyang, Y., Yang, G. H., & Pestka, J. J. (2000). Modulation of transcription factor AP-1 activity in murine EL-4 thymoma cells by vomitoxin (deoxynivalenol). Toxicology and Applied Pharmacology, 163, 17–25. DOI: 10.1006/taap.1999.8859. http://dx.doi.org/10.1006/taap.1999.885910.1006/taap.1999.8859Suche in Google Scholar

[25] Li, W. W., Gong, Y. N., Jin, X. K., He, L., Jiang, H., Ren, F., & Wang, Q. (2010). The effect of dietary zinc supplementation on the growth, hepatopancreas fatty acid composition and gene expression in the Chinese mitten crab, Eriocheir sinensis (H. Milne-Edwards) (Decapoda: Grapsidae). Aquaculture Research, 41, e828–e837. DOI: 10.1111/j.1365-2109.2010.02603.x. http://dx.doi.org/10.1111/j.1365-2109.2010.02603.x10.1111/j.1365-2109.2010.02603.xSuche in Google Scholar

[26] Luongo, D., Severino, L., Bergamo, P., D’arienzo, R., & Rossi, M. (2010). Trichothecenes NIV and DON modulate the maturation of murine dendritic cells. Toxicon, 55, 73–80. DOI: 10.1016/j.toxicon.2009.06.039. http://dx.doi.org/10.1016/j.toxicon.2009.06.03910.1016/j.toxicon.2009.06.039Suche in Google Scholar

[27] Mackuľak, T., Olejnikova, P., Prousek, J., & Švorc, L. (2011). Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment. Chemical Papers, 65, 835–839. DOI: 10.2478/s11696-011-0075-5. http://dx.doi.org/10.2478/s11696-011-0075-510.2478/s11696-011-0075-5Suche in Google Scholar

[28] Mackuľak, T., Smolinska, M., Olejnikova, P., Prousek, J., & Takačova, A. (2012). Reduction of ostazine dyes’ photodynamic effect by Fenton reaction. Chemical Papers, 66, 156–160. DOI: 10.2478/s11696-011-0104-4. http://dx.doi.org/10.2478/s11696-011-0104-410.2478/s11696-011-0104-4Suche in Google Scholar

[29] Maret, W. (2011). Redox biochemistry of mammalian metallothioneins. Journal of Biological Inorganic Chemistry, 16, 1079–1086. DOI: 10.1007/s00775-011-0800-0. http://dx.doi.org/10.1007/s00775-011-0800-010.1007/s00775-011-0800-0Suche in Google Scholar

[30] Nyblom, H., Berggren, U., Balldin, J., & Olsson, R. (2004). High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol and Alcoholism, 39, 336–339. DOI: 10.1093/alcalc/agh074. http://dx.doi.org/10.1093/alcalc/agh07410.1093/alcalc/agh074Suche in Google Scholar

[31] Oakley, B. R., Kirsch, D. R., & Morris, N. R. (1980). A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry, 105, 361–363. DOI: 10.1016/0003-2697(80)90470-4. http://dx.doi.org/10.1016/0003-2697(80)90470-410.1016/0003-2697(80)90470-4Suche in Google Scholar

[32] Parejo, L., Codina, C., Petrakis, C., & Kefalas, P. (2000). Evaluation of scavenging activity assessed by Co(ii)/EDTAinduced luminol chemiluminescence and DPPH* center dot (2,2-diphenyl-1-picrylhydrazyl) free radical assay. Journal of Pharmacological and Toxicological Methods, 44, 507–512. DOI: 10.1016/s1056-8719(01)00110-1. http://dx.doi.org/10.1016/S1056-8719(01)00110-110.1016/S1056-8719(01)00110-1Suche in Google Scholar

[33] Petrlova, J., Potesil, D., Mikelova, R., Blastik, O., Adam, V., Trnkova, L., Jelen, F., Prusa, R., Kukacka, J., & Kizek, R. (2006). Attomole voltammetric determination of metallothionein. Electrochimica Acta, 51, 5112–5119. DOI: 10.1016/j.electacta.2006.03.078. http://dx.doi.org/10.1016/j.electacta.2006.03.07810.1016/j.electacta.2006.03.078Suche in Google Scholar

[34] Raspor, B., Paić, M., & Erk, M. (2001). Analysis of metallothioneins by the modified Brdička procedure. Talanta, 55, 109–115. DOI: 10.1016/s0039-9140(01)00399-x. http://dx.doi.org/10.1016/S0039-9140(01)00399-X10.1016/S0039-9140(01)00399-XSuche in Google Scholar

[35] Reboux, G., Bellanger, A. P., Roussel, S., Grenouillet, F., & Millon, L. (2010). Moulds in dwellings: Health risks and involved species. Revue des Maladies Respiratoires, 27, 169–179. DOI: 10.1016/j.rmr.2009.09.003. http://dx.doi.org/10.1016/j.rmr.2009.09.00310.1016/j.rmr.2009.09.003Suche in Google Scholar PubMed

[36] Ryvolova, M., Krizkova, S., Adam, V., Beklova, M., Trnkova, L., Hubalek, J., & Kizek, R. (2011). Analytical methods for metallothionein detection. Current Analytical Chemistry, 7, 243–261. 10.2174/1573411011107030243Suche in Google Scholar

[37] Sen, C. K., & Packer, L. (1996). Antioxidant and redox regulation of gene transcription. Faseb Journal, 10, 709–720. 10.1096/fasebj.10.7.8635688Suche in Google Scholar PubMed

[38] Singh, D. K., Rastogi, A., Sakhuja, P., Gondal, R., & Sarin, S. K. (2010). Comparison of clinical, biochemical and histological features of alcoholic steatohepatitis and nonalcoholic steatohepatitis in Asian Indian patients. Indian Journal of Pathology and Microbiology, 53, 408–413. DOI: 10.4103/0377-4929.68246. http://dx.doi.org/10.4103/0377-4929.6824610.4103/0377-4929.68246Suche in Google Scholar PubMed

[39] Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., & Kizek, R. (2010). Deoxynivalenol and its toxicity. Interdisciplinary Toxicology, 3, 94–99. DOI: 10.2478/v10102-010-0019-x. http://dx.doi.org/10.2478/v10102-010-0019-x10.2478/v10102-010-0019-xSuche in Google Scholar PubMed PubMed Central

[40] Sochor, J., Ryvolova, M., Krystofova, O., Salas, P., Hubalek, J., Adam, V., Trnkova, L., Havel, L., Beklova, M., Zehnalek, J., Provaznik, I., & Kizek, R. (2010). Fully automated spectrometric protocols for determination of an antioxidant activity: advantages and disadvantages. Molecules, 15, 8618–8640. DOI: 10.3390/molecules15128618. http://dx.doi.org/10.3390/molecules1512861810.3390/molecules15128618Suche in Google Scholar PubMed PubMed Central

[41] Sun, X. M., Zhang, X. H., Wang, H. Y., Cao, W. J., Yan, X., Zuo, L. F., Wang, J. L., & Wang, F. R. (2002). Effects of sterigmatocystin, deoxynivalenol and aflatoxin g(1) on apoptosis of human peripheral blood lymphocytes in vitro’. Biomedical and Environmental Sciences, 15, 145–152. Suche in Google Scholar

[42] Takačova, A., Mackuľak, T., Smolinska, M., Hutňan, M., & Olejnikova, P. (2012). Influence of selected biowaste materials pre-treatment on their anaerobic digestion. Chemical Papers, 66, 129–137. DOI: 10.2478/s11696-011-0107-1. http://dx.doi.org/10.2478/s11696-011-0107-110.2478/s11696-011-0107-1Suche in Google Scholar

[43] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009. http://dx.doi.org/10.1016/j.cbi.2005.12.00910.1016/j.cbi.2005.12.009Suche in Google Scholar PubMed

[44] Vasak, M., & Meloni, G. (2011). Chemistry and biology of mammalian metallothioneins. Journal of Biological Inorganic Chemistry, 16, 1067–1078. DOI: 10.1007/s00775-011-0799-2. http://dx.doi.org/10.1007/s00775-011-0799-210.1007/s00775-011-0799-2Suche in Google Scholar PubMed

[45] Vasatkova, A., Krizova, S., Krystofova, O., Adam, V., Zeman, L., Beklova, M., & Kizek, R. (2009). Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats. Neuroendocrinology Letters, 30, 163–168. Suche in Google Scholar

[46] Yordanova, P., Islam, Z., & Pestka, J. J. (2003). Kinetics of deoxynivalenol (vomitoxin) distribution and clearance following oral exposure in the mouse. Toxicological Sciences, 72, 253–253. http://dx.doi.org/10.1093/toxsci/kfg02210.1093/toxsci/kfg022Suche in Google Scholar PubMed

[47] Zhang, X., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2009). The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon, 54, 513–518. DOI: 10.1016/j.toxicon.2009.05.021 http://dx.doi.org/10.1016/j.toxicon.2009.05.02110.1016/j.toxicon.2009.05.021Suche in Google Scholar PubMed

Published Online: 2012-9-13
Published in Print: 2012-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0229-0/html
Button zum nach oben scrollen