Startseite Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent

  • Selvaraj Roopan EMAIL logo , Fazlur-Rahman Khan und Jong Jin
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Mitsunobu reaction is a well-established fundamental reaction and has been widely applied in organic synthesis. In this paper, under Mitsunobu conditions dehydration proceeds between (2-chloroquinolin-3-yl)methanol and nitrogen heterocyclic compounds such as quinazolinone, pyrimidone, 2-oxoquinoline in dry THF in the presence of triethylamine, triphenylphosphane and diethyl azodicarboxylate to give the corresponding products. As part of our recent research, we attempted to couple two N-heterocyclic compounds under Mitsunobu reaction conditions to provide efficient building blocks for natural product synthesis.

[1] Alexandre, F. R., Berecibar, A., Wrigglesworth, R., & Besson, T. (2003). Novel series of 8H-quinazolino[4,3-b]quinazolin-8-ones via two Niementowski condensations. Tetrahedron, 59, 1413–1419. DOI: 10.1016/S0040-4020(03)00053-X. http://dx.doi.org/10.1016/S0040-4020(03)00053-X10.1016/S0040-4020(03)00053-XSuche in Google Scholar

[2] Chavan, S. P., & Sivappa, R. (2004a). A short and efficient general synthesis of luotonin A, B and E. Tetrahedron, 60, 9931–9935. DOI: 10.1016/j.tet.2004.08.025. http://dx.doi.org/10.1016/j.tet.2004.08.02510.1016/j.tet.2004.08.025Suche in Google Scholar

[3] Chavan, S. P., & Sivappa, R. (2004b). A synthesis of camptothecin. Tetrahedron Letters, 45, 3113–3115. DOI: 10.1016/j.tetlet.2004.02.091. http://dx.doi.org/10.1016/j.tetlet.2004.02.09110.1016/j.tetlet.2004.02.091Suche in Google Scholar

[4] Cravotto, G., Nano, G. M., Palmisano, G., & Tagliapietra, S. (2001). An asymmetric approach to coumarin anticoagulants via hetero-Diels-Alder cycloaddition. Tetrahedron: Asymmetry, 12, 707–709. DOI: 10.1016/S0957-4166(01)00124-0. http://dx.doi.org/10.1016/S0957-4166(01)00124-010.1016/S0957-4166(01)00124-0Suche in Google Scholar

[5] Das, B., Madhusudhan, P., & Kashinatham, A. (1998). Two efficient methods for the conversion of camptothecin to mappicine ketone, an antiviral lead compound. Tetrahedron Letters, 39, 431–432. DOI: 10.1016/S0040-4039(97)10539-1. http://dx.doi.org/10.1016/S0040-4039(97)10539-110.1016/S0040-4039(97)10539-1Suche in Google Scholar

[6] Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 106, 17–89. DOI: 10.1021/cr0505728. http://dx.doi.org/10.1021/cr050572810.1021/cr0505728Suche in Google Scholar PubMed

[7] Dömling, A., & Ugi, I. (2000). Multicomponent reactions with isocyanides. Angewandte Chemie International Edition, 39, 3168–3210. DOI: 10.1002/1521-3773(20000915)39:18〈3168::AID-ANIE3168〉3.0.CO;2-U. Suche in Google Scholar

[8] Guan, L.-P., Jin, Q.-H., Tian, G.-R., Chai, K.-Y., & Quan, Z.-S. (2007). Synthesis of some quinoline-2(1H)-one and 1,2,4-triazolo [4,3-a] quinoline derivatives as potent anticonvulsants. Journal of Pharmacy & Pharmaceutical Sciences, 10, 254–262. Suche in Google Scholar

[9] Kayser, O., & Kolodziej, H. (1997). Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Medica, 63, 508–510. DOI: 10.1055/s-2006-957752. http://dx.doi.org/10.1055/s-2006-95775210.1055/s-2006-957752Suche in Google Scholar PubMed

[10] Khan, F. N., Mittal, S., Anjum, S., Hathwar, V. R., & Ng, S. W. (2009a). Ethyl 6-chloro-2-oxo-4-phenyl-1,2-dihydroquinoline-3-carboxylate. Acta Crystallographica Section E, E65, o2987. DOI: 10.1107/S1600536809045425. http://dx.doi.org/10.1107/S160053680904542510.1107/S1600536809045425Suche in Google Scholar PubMed PubMed Central

[11] Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010a). 2-Chloro-3-hydroxymethyl-7,8-dimethylquinoline. Acta Crystallographica Section E, E66, o200. DOI: 10.1107/S160053680905404X. http://dx.doi.org/10.1107/S160053680905404X10.1107/S160053680905404XSuche in Google Scholar PubMed PubMed Central

[12] Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010b). 2-Chloro-3-hydroxymethyl-6-methoxyquinoline. Acta Crystallographica Section E, E66, o201. DOI: 10.1107/S1600536809054051. http://dx.doi.org/10.1107/S160053680905405110.1107/S1600536809054051Suche in Google Scholar PubMed PubMed Central

[13] Khan, F. N., Subashini, R., Kumar, R., Hathwar, V. R., & Ng, S. W. (2009b). 2-Chloroquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2710. DOI: 10.1107/S1600536809040665. http://dx.doi.org/10.1107/S160053680904066510.1107/S1600536809040665Suche in Google Scholar

[14] Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R., & Ng, S. W. (2009c). 2-Chloro-8-methylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2722. DOI: 10.1107/S1600536809040859. http://dx.doi.org/10.1107/S160053680904085910.1107/S1600536809040859Suche in Google Scholar

[15] Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R., & Ng, S. W. (2009d). 2-Chloro-7,8-dimethylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2709. DOI: 10.1107/S1600536809040860. http://dx.doi.org/10.1107/S160053680904086010.1107/S1600536809040860Suche in Google Scholar

[16] Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2009e). 2-Chloro-6-methylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2686. DOI: 10.1107/S1600536809040653. http://dx.doi.org/10.1107/S160053680904065310.1107/S1600536809040653Suche in Google Scholar

[17] Kidwai, M., & Negi, N. (1997). Synthesis of some novel substituted quinolines as potent analgesic agents. Monatshefte für Chemie, 128, 85–89. DOI: 10.1007/BF00807642. http://dx.doi.org/10.1007/BF0080764210.1007/BF00807642Suche in Google Scholar

[18] Kirkiacharian, S., Thuy, D. T., Sicsic, S., Bakhchinian, R., Kurkjian, R., & Tonnaire, T. (2002). Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Il Farmaco, 57, 703–708. DOI: 10.1016/S0014-827X(02)01264-8. http://dx.doi.org/10.1016/S0014-827X(02)01264-810.1016/S0014-827X(02)01264-8Suche in Google Scholar

[19] Leonard, N. J., & Curtin, D. Y. (1946). Preparation of 4-mercapto and 4-amino quinazolines. The Journal of Organic Chemistry, 11, 349–352. DOI: 10.1021/jo01174a007. http://dx.doi.org/10.1021/jo01174a00710.1021/jo01174a007Suche in Google Scholar PubMed

[20] Manivel, P., Roopan, S. M., & Khan, F. N. (2008). Synthesis of O-substituted benzophenones by Grignard reaction of 3-substituted isocoumarins. Journal of the Chilean Chemical Society, 53, 1609–1610. DOI: 10.4067/S0717-97072008000300012. http://dx.doi.org/10.4067/S0717-9707200800030001210.4067/S0717-97072008000300012Suche in Google Scholar

[21] Patil, N. T., Khan, F. N., & Yamamoto, Y. (2004). Microwave-enhanced Pd(0)/acetic acid catalyzed allylation reactions of C, N, and O-pronucleophiles with alkynes. Tetrahedron Letters, 45, 8497–8499. DOI: 10.1016/j.tetlet.2004.09.099. http://dx.doi.org/10.1016/j.tetlet.2004.09.09910.1016/j.tetlet.2004.09.099Suche in Google Scholar

[22] Roopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N., & Khan, F. N. (2009a). N-phenylnictoninamide. Acta Crystallographica Section E, E65, o571. DOI: 10.1107/S1600536809004863. http://dx.doi.org/10.1107/S160053680900486310.1107/S1600536809004863Suche in Google Scholar PubMed PubMed Central

[23] Roopan, S. M., & Khan, F. R. N. (2010). ZnO nanoparticles in the synthesis of some AB ring core of camptothecin. Chemical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y. http://dx.doi.org/10.2478/s11696-010-0058-y10.2478/s11696-010-0058-ySuche in Google Scholar

[24] Roopan, S. M., & Khan, F. R. N. (2009). Synthesis, antioxidant, hemolytic and cytotoxicity activity of AB ring cores of mappicine. ARKIVOC, xiii, 161–169. 10.3998/ark.5550190.0010.d14Suche in Google Scholar

[25] Roopan, S. M., & Khan, F. N. (2008). Free radical scavenging activity of nitrogen heterocyclics-quinazolinones & tetrahydrocarbazolones. Indian Journal of Heterocyclic Chemistry, 18, 183–184. Suche in Google Scholar

[26] Roopan, S. M., Khan, F. R. N., & Mandal, B. K. (2010). Fe nanoparticles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)-ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10.1016/j.tetlet.2010.02.128. http://dx.doi.org/10.1016/j.tetlet.2010.02.12810.1016/j.tetlet.2010.02.128Suche in Google Scholar

[27] Roopan, S. M., Maiyalagan, T., & Khan, F. N. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/V08-149. http://dx.doi.org/10.1139/V08-14910.1139/v08-149Suche in Google Scholar

[28] Roopan, S. M., Reddy, B. R., Kumar, A. S., & Khan, F. N. (2009b). Synthesis of 3-substituted isocoumarins using montmorillonite K-10. Indian Journal of Heterocyclic Chemistry, 19, 81–82. Suche in Google Scholar

[29] Wang, C.-J., Hsieh, Y.-J., Chu, C.-Y., Lin, Y.-L., & Tseng, T.-H. (2002). Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Letters, 183, 163–168. DOI: 10.1016/S0304-3835(02)00031-9. http://dx.doi.org/10.1016/S0304-3835(02)00031-910.1016/S0304-3835(02)00031-9Suche in Google Scholar

[30] Wang, H., & Ganesan, A. (1998). Total synthesis of the cytotoxic alkaloid luotonin A Tetrahedron Letters, 39, 9097–9098. DOI: 10.1016/S0040-4039(98)02004-8. http://dx.doi.org/10.1016/S0040-4039(98)02004-810.1016/S0040-4039(98)02004-8Suche in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0018-1/html
Button zum nach oben scrollen