Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
-
Eva Petrlíková
, Karel Waisser
, Rafael Doležal , Pavel Holý , Jiří Gregor , Jiři Kuneš and Jarmila Kaustová
Abstract
A series of forty-five derivatives of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and forty-five derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones was synthesised. The compounds exhibited in-vitro activity against Mycobacterium tuberculosis, M. kansasii (two strains), and M. avium. The most active derivatives were more active than isonicotinhydrazide (INH). The quantitative relationships between the structure and antimycobacterial activity were calculated. The activity against M. tuberculosis increased with the lipophilicity of the substituents.
[1] Aaron, L., Saadoun, D., Calatroni, I., Launay, O., Mémain, N., Vincent, V., Marchal, G., Dupont, B., Bouchaud, O., Valeyre, D., & Lortholary, O. (2004). Tuberculosis in HIV-infected patients: a comprehensive review. Clinical Microbiology and Infection, 10, 388–398. DOI: 10.1111/j.1469-0691.2004.00758.x. http://dx.doi.org/10.1111/j.1469-0691.2004.00758.x10.1111/j.1469-0691.2004.00758.xSearch in Google Scholar
[2] Dye, C. (2009). Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nature Reviews Microbiology, 7, 81–87. DOI: 10.1038/nrmicro2048. http://dx.doi.org/10.1038/nrmicro204810.1038/nrmicro2048Search in Google Scholar
[3] Free, S. M., & Wilson, J. W. (1964). A mathematical contribution to structure-activity studies. Journal of Medicinal Chemistry, 7, 395–399. DOI: 10.1021/jm00334a001. http://dx.doi.org/10.1021/jm00334a00110.1021/jm00334a001Search in Google Scholar
[4] Fujita, T., & Ban, T. (1971). Structure-activity relation. 3. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. Journal of Medicinal Chemistry, 14, 148–152. DOI: 10.1021/jm00284a016. http://dx.doi.org/10.1021/jm00284a01610.1021/jm00284a016Search in Google Scholar
[5] Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269–276. DOI: 10.1016/S1093-3263(01)00123-1. http://dx.doi.org/10.1016/S1093-3263(01)00123-110.1016/S1093-3263(01)00123-1Search in Google Scholar
[6] Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Study of physicochemical properties-antitubercular activity relationship of naphtalene-1,4-dione analogs: A QSAR approach. Chemical Papers, 63, 723–730. DOI: 10.2478/s11696-009-0080-0. http://dx.doi.org/10.2478/s11696-009-0080-010.2478/s11696-009-0080-0Search in Google Scholar
[7] Hansch, C., & Leo, A. J. (1979). Substituent constants for correlation analysis in chemistry and biology. New York, NY, USA: Wiley. Search in Google Scholar
[8] Hlasta, D. J., Demers, J. P, Foleno, B. D, Frago-Spano, S. A., Guan, J., Hilliar, J. J., Macielag, M. J., Ohemeng, K. A., Sheppard, C. M., Sui, Z., Webb, G. C., Weidner-Wells, M. A., Werblood, H., & Barrett, J. F. (1998). Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: Pharmacofore identification based on the screening hit closantel. Bioorganic & Medicinal Chemistry Letters, 8, 1923–1928. DOI: 10.1016/S0960-894X(98)00326-6. http://dx.doi.org/10.1016/S0960-894X(98)00326-610.1016/S0960-894X(98)00326-6Search in Google Scholar
[9] Li, X., Liu, N., Zhang, H., Knudson, S. E., Slayden, R. A., & Tonge, P. J. (2010). Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters, 20, 6306–6309. DOI: 10.1016/j.bmcl.2010.08.076. http://dx.doi.org/10.1016/j.bmcl.2010.08.07610.1016/j.bmcl.2010.08.076Search in Google Scholar PubMed PubMed Central
[10] Macielag, M. J., Demers, J. P., Fraga-Spano, S. A., Hlasta, D. J., Johnson, S. G., Kanojia, R. M., Russell, R. K., Sui, Z., Weidner-Wells, M. A., Werblood, H., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C., & Barrett, J. F. (1998). Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. Journal of Medicinal Chemistry, 41, 2939–2943. DOI: 10.1021/jm9803572. http://dx.doi.org/10.1021/jm980357210.1021/jm9803572Search in Google Scholar PubMed
[11] Matyk, J., Waisser, K., Dražková, K., Kuneš, J., Klimešová, V., Palát, K., Jr., Kaustová, J. (2005). Heterocyclic isosters of antibacterial salicylanilides. II Farmaco, 60, 399–408. DOI: 10.1016/j.farmac.2005.02.002. http://dx.doi.org/10.1016/j.farmac.2005.02.00210.1016/j.farmac.2005.02.002Search in Google Scholar PubMed
[12] Naidoo, K., Naidoo, K., Padayatchi, N., & Karim, Q. A. (2011). HIV-associated tuberculosis. Clinical and Developmental Immunology, 2011, Article ID 585919, 8 pages. DOI: 10.1155/2011/585919. 10.1155/2011/585919Search in Google Scholar
[13] Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9. http://dx.doi.org/10.2478/s11696-008-0089-910.2478/s11696-008-0089-9Search in Google Scholar
[14] O’Brien, R. J., & Nunn, P. P. (2001). The need for new drugs against tuberculosis. American Journal of Respiratory and Critical Care Medicine, 163, 1055–1058. 10.1164/ajrccm.163.5.2007122Search in Google Scholar
[15] Petrlíková, E., Waisser, K., Jílek, P., & Dufková, I. (2010). Antibacterial activity of N-nenzylsalicylthioamides, Folia Microbiologica, 55, 418–421. DOI: 10.1007/s12223-010-0070-1. http://dx.doi.org/10.1007/s12223-010-0070-110.1007/s12223-010-0070-1Search in Google Scholar
[16] Petrlíková E., Waisser K., Palát, K., Kuneš, J., Kaustová J. (2011). A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides, Chemical Papers, 65, 52–59. DOI: 10.2478/s11696-010-0084-9. http://dx.doi.org/10.2478/s11696-010-0084-910.2478/s11696-010-0084-9Search in Google Scholar
[17] Saeed, A., & Ashraf, Z. (2008). Synthesis of some 3-aryl-1H-isochromene-1-thiones. Journal of Heterocyclic Chemistry, 45, 679–682. DOI: 10.1002/jhet.5570450307. http://dx.doi.org/10.1002/jhet.557045030710.1002/jhet.5570450307Search in Google Scholar
[18] Schroeder, E. K., de Souza, O. N., Santos, D. S., Blanchard, J. S., & Basso, L. A. (2002). Drugs that inhibit mycolic acid biosynthesis in mycobacterium tuberculosis. Current Pharmaceutical Biotechnology, 3, 197–225. DOI: 10.2174/1389201023378328. http://dx.doi.org/10.2174/138920102337832810.2174/1389201023378328Search in Google Scholar
[19] Tortoli, E. (2009). Clinical manifestations of nontuberculous mycobacteria infections. Clinical Microbiology and Infection, 15, 906–910. DOI: 10.1111/j.1469-0691.2009.03014.x. http://dx.doi.org/10.1111/j.1469-0691.2009.03014.x10.1111/j.1469-0691.2009.03014.xSearch in Google Scholar
[20] van den Boogaard, J., Kibiki, G. S., Kisanga, E. R., Boeree, M. J., & Aarnoutse, R. E. (2009). New drugs against tuberculosis: Problems, progress, and evaluation of agents in clinical development. Antimicrobial Agents and Chemotherapy, 53, 849–862. DOI: 10.1128/AAC.00749-08. http://dx.doi.org/10.1128/AAC.00749-0810.1128/AAC.00749-08Search in Google Scholar
[21] Wagner, G., Singer, D., & Weuffen, W. (1966). Studies on 2-hydroxythiobenzamide and 2-hydroxythiobenzanilide. 1. Synthesis of the compounds. Pharmazie, 21, 161–166. Search in Google Scholar
[22] Waisser, K., Čižmárik, J., Holý, P., Petrlíková, E., Kuneš, J., & Kaustová, J. (2009). Antimycobacterial 3-(4-ethoxythiocarbonylphenyl)-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-(4-ethoxythiocarbonylphenyl)-2H-1,3-benzoxazine-2,4(3H)-dithiones. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 56, 171–179. Search in Google Scholar
[23] Waisser, K., Gregor, J., Kubicová, L., Klimešová, V., Kuneš, J., Macháček, M., & Kaustová, J. (2000). New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 6-chloro-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones. European Journal of Medicinal Chemistry, 35, 733–741. DOI: 10.1016/S0223-5234(00)00 174-4. http://dx.doi.org/10.1016/S0223-5234(00)00174-410.1016/S0223-5234(00)00174-4Search in Google Scholar
[24] Waisser, K., Hladůvková, J., Holý, P., Macháček, M., Karajannis, P., Kubicová, L., Klimešová, V., Kuneš, J., & Kaustová, J. (2001a). 2H-1,3-benzoxazine-2,4(3H)-diones substituted in position 6 as antimycobacterial agents. Chemical Papers, 55, 323–334. Search in Google Scholar
[25] Waisser, K, Hladůvková, J, Kuneš, J, Kubicová, L, Klimešová, V, Karajannis, P, & Kaustová, J. (2001b). Synthesis and antimycobacterial activity of salicylanilides substituted in position 5. Chemical Papers, 55, 121–129. Search in Google Scholar
[26] Waisser, K., Matyk, J., Divišová, H., Husáková, P., Kuneš, J., Klimešová, V., Kaustová, J., Möllmann, U., Dahse, H.-M., & Miko, M. (2006). The oriented development of antituberculotics: Salicylanilides. Archiv der Pharmazie, 339, 616–620. DOI: 10.1002/ardp.200600093. http://dx.doi.org/10.1002/ardp.20060009310.1002/ardp.200600093Search in Google Scholar PubMed
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Steam-reforming of ethanol for hydrogen production
- Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
- Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
- Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
- Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
- Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
- Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
- Swelling properties of particles in amphoteric polyacrylamide dispersion
- Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
- An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
- Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
- Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
- Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
- Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
- Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
- Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
- Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Articles in the same Issue
- Steam-reforming of ethanol for hydrogen production
- Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
- Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
- Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
- Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
- Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
- Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
- Swelling properties of particles in amphoteric polyacrylamide dispersion
- Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
- An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
- Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
- Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
- Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
- Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
- Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
- Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
- Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions