Startseite Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6

  • Eva Petrlíková EMAIL logo , Karel Waisser , Rafael Doležal , Pavel Holý , Jiří Gregor , Jiři Kuneš und Jarmila Kaustová
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A series of forty-five derivatives of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and forty-five derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones was synthesised. The compounds exhibited in-vitro activity against Mycobacterium tuberculosis, M. kansasii (two strains), and M. avium. The most active derivatives were more active than isonicotinhydrazide (INH). The quantitative relationships between the structure and antimycobacterial activity were calculated. The activity against M. tuberculosis increased with the lipophilicity of the substituents.

[1] Aaron, L., Saadoun, D., Calatroni, I., Launay, O., Mémain, N., Vincent, V., Marchal, G., Dupont, B., Bouchaud, O., Valeyre, D., & Lortholary, O. (2004). Tuberculosis in HIV-infected patients: a comprehensive review. Clinical Microbiology and Infection, 10, 388–398. DOI: 10.1111/j.1469-0691.2004.00758.x. http://dx.doi.org/10.1111/j.1469-0691.2004.00758.x10.1111/j.1469-0691.2004.00758.xSuche in Google Scholar

[2] Dye, C. (2009). Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nature Reviews Microbiology, 7, 81–87. DOI: 10.1038/nrmicro2048. http://dx.doi.org/10.1038/nrmicro204810.1038/nrmicro2048Suche in Google Scholar

[3] Free, S. M., & Wilson, J. W. (1964). A mathematical contribution to structure-activity studies. Journal of Medicinal Chemistry, 7, 395–399. DOI: 10.1021/jm00334a001. http://dx.doi.org/10.1021/jm00334a00110.1021/jm00334a001Suche in Google Scholar

[4] Fujita, T., & Ban, T. (1971). Structure-activity relation. 3. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. Journal of Medicinal Chemistry, 14, 148–152. DOI: 10.1021/jm00284a016. http://dx.doi.org/10.1021/jm00284a01610.1021/jm00284a016Suche in Google Scholar

[5] Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269–276. DOI: 10.1016/S1093-3263(01)00123-1. http://dx.doi.org/10.1016/S1093-3263(01)00123-110.1016/S1093-3263(01)00123-1Suche in Google Scholar

[6] Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Study of physicochemical properties-antitubercular activity relationship of naphtalene-1,4-dione analogs: A QSAR approach. Chemical Papers, 63, 723–730. DOI: 10.2478/s11696-009-0080-0. http://dx.doi.org/10.2478/s11696-009-0080-010.2478/s11696-009-0080-0Suche in Google Scholar

[7] Hansch, C., & Leo, A. J. (1979). Substituent constants for correlation analysis in chemistry and biology. New York, NY, USA: Wiley. Suche in Google Scholar

[8] Hlasta, D. J., Demers, J. P, Foleno, B. D, Frago-Spano, S. A., Guan, J., Hilliar, J. J., Macielag, M. J., Ohemeng, K. A., Sheppard, C. M., Sui, Z., Webb, G. C., Weidner-Wells, M. A., Werblood, H., & Barrett, J. F. (1998). Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: Pharmacofore identification based on the screening hit closantel. Bioorganic & Medicinal Chemistry Letters, 8, 1923–1928. DOI: 10.1016/S0960-894X(98)00326-6. http://dx.doi.org/10.1016/S0960-894X(98)00326-610.1016/S0960-894X(98)00326-6Suche in Google Scholar

[9] Li, X., Liu, N., Zhang, H., Knudson, S. E., Slayden, R. A., & Tonge, P. J. (2010). Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters, 20, 6306–6309. DOI: 10.1016/j.bmcl.2010.08.076. http://dx.doi.org/10.1016/j.bmcl.2010.08.07610.1016/j.bmcl.2010.08.076Suche in Google Scholar PubMed PubMed Central

[10] Macielag, M. J., Demers, J. P., Fraga-Spano, S. A., Hlasta, D. J., Johnson, S. G., Kanojia, R. M., Russell, R. K., Sui, Z., Weidner-Wells, M. A., Werblood, H., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C., & Barrett, J. F. (1998). Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. Journal of Medicinal Chemistry, 41, 2939–2943. DOI: 10.1021/jm9803572. http://dx.doi.org/10.1021/jm980357210.1021/jm9803572Suche in Google Scholar PubMed

[11] Matyk, J., Waisser, K., Dražková, K., Kuneš, J., Klimešová, V., Palát, K., Jr., Kaustová, J. (2005). Heterocyclic isosters of antibacterial salicylanilides. II Farmaco, 60, 399–408. DOI: 10.1016/j.farmac.2005.02.002. http://dx.doi.org/10.1016/j.farmac.2005.02.00210.1016/j.farmac.2005.02.002Suche in Google Scholar PubMed

[12] Naidoo, K., Naidoo, K., Padayatchi, N., & Karim, Q. A. (2011). HIV-associated tuberculosis. Clinical and Developmental Immunology, 2011, Article ID 585919, 8 pages. DOI: 10.1155/2011/585919. 10.1155/2011/585919Suche in Google Scholar

[13] Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9. http://dx.doi.org/10.2478/s11696-008-0089-910.2478/s11696-008-0089-9Suche in Google Scholar

[14] O’Brien, R. J., & Nunn, P. P. (2001). The need for new drugs against tuberculosis. American Journal of Respiratory and Critical Care Medicine, 163, 1055–1058. 10.1164/ajrccm.163.5.2007122Suche in Google Scholar

[15] Petrlíková, E., Waisser, K., Jílek, P., & Dufková, I. (2010). Antibacterial activity of N-nenzylsalicylthioamides, Folia Microbiologica, 55, 418–421. DOI: 10.1007/s12223-010-0070-1. http://dx.doi.org/10.1007/s12223-010-0070-110.1007/s12223-010-0070-1Suche in Google Scholar

[16] Petrlíková E., Waisser K., Palát, K., Kuneš, J., Kaustová J. (2011). A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides, Chemical Papers, 65, 52–59. DOI: 10.2478/s11696-010-0084-9. http://dx.doi.org/10.2478/s11696-010-0084-910.2478/s11696-010-0084-9Suche in Google Scholar

[17] Saeed, A., & Ashraf, Z. (2008). Synthesis of some 3-aryl-1H-isochromene-1-thiones. Journal of Heterocyclic Chemistry, 45, 679–682. DOI: 10.1002/jhet.5570450307. http://dx.doi.org/10.1002/jhet.557045030710.1002/jhet.5570450307Suche in Google Scholar

[18] Schroeder, E. K., de Souza, O. N., Santos, D. S., Blanchard, J. S., & Basso, L. A. (2002). Drugs that inhibit mycolic acid biosynthesis in mycobacterium tuberculosis. Current Pharmaceutical Biotechnology, 3, 197–225. DOI: 10.2174/1389201023378328. http://dx.doi.org/10.2174/138920102337832810.2174/1389201023378328Suche in Google Scholar

[19] Tortoli, E. (2009). Clinical manifestations of nontuberculous mycobacteria infections. Clinical Microbiology and Infection, 15, 906–910. DOI: 10.1111/j.1469-0691.2009.03014.x. http://dx.doi.org/10.1111/j.1469-0691.2009.03014.x10.1111/j.1469-0691.2009.03014.xSuche in Google Scholar

[20] van den Boogaard, J., Kibiki, G. S., Kisanga, E. R., Boeree, M. J., & Aarnoutse, R. E. (2009). New drugs against tuberculosis: Problems, progress, and evaluation of agents in clinical development. Antimicrobial Agents and Chemotherapy, 53, 849–862. DOI: 10.1128/AAC.00749-08. http://dx.doi.org/10.1128/AAC.00749-0810.1128/AAC.00749-08Suche in Google Scholar

[21] Wagner, G., Singer, D., & Weuffen, W. (1966). Studies on 2-hydroxythiobenzamide and 2-hydroxythiobenzanilide. 1. Synthesis of the compounds. Pharmazie, 21, 161–166. Suche in Google Scholar

[22] Waisser, K., Čižmárik, J., Holý, P., Petrlíková, E., Kuneš, J., & Kaustová, J. (2009). Antimycobacterial 3-(4-ethoxythiocarbonylphenyl)-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-(4-ethoxythiocarbonylphenyl)-2H-1,3-benzoxazine-2,4(3H)-dithiones. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 56, 171–179. Suche in Google Scholar

[23] Waisser, K., Gregor, J., Kubicová, L., Klimešová, V., Kuneš, J., Macháček, M., & Kaustová, J. (2000). New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 6-chloro-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones. European Journal of Medicinal Chemistry, 35, 733–741. DOI: 10.1016/S0223-5234(00)00 174-4. http://dx.doi.org/10.1016/S0223-5234(00)00174-410.1016/S0223-5234(00)00174-4Suche in Google Scholar

[24] Waisser, K., Hladůvková, J., Holý, P., Macháček, M., Karajannis, P., Kubicová, L., Klimešová, V., Kuneš, J., & Kaustová, J. (2001a). 2H-1,3-benzoxazine-2,4(3H)-diones substituted in position 6 as antimycobacterial agents. Chemical Papers, 55, 323–334. Suche in Google Scholar

[25] Waisser, K, Hladůvková, J, Kuneš, J, Kubicová, L, Klimešová, V, Karajannis, P, & Kaustová, J. (2001b). Synthesis and antimycobacterial activity of salicylanilides substituted in position 5. Chemical Papers, 55, 121–129. Suche in Google Scholar

[26] Waisser, K., Matyk, J., Divišová, H., Husáková, P., Kuneš, J., Klimešová, V., Kaustová, J., Möllmann, U., Dahse, H.-M., & Miko, M. (2006). The oriented development of antituberculotics: Salicylanilides. Archiv der Pharmazie, 339, 616–620. DOI: 10.1002/ardp.200600093. http://dx.doi.org/10.1002/ardp.20060009310.1002/ardp.200600093Suche in Google Scholar PubMed

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0020-7/html
Button zum nach oben scrollen