Startseite Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors

  • Kewen Tang EMAIL logo und Panliang Zhang
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hydrophilic β-cyclodextrin (β-CD) and its derivatives are not soluble in organic liquids but they are highly soluble in water and can interact with enantiomers selectively to form diastereomeric complexes which enable their use as chiral selectors in chiral solvent extraction. In this paper, terbutaline enantiomers were extracted by hydrophilic β-CD derivatives in an aqueous/organic biphasic solvent system with racemic terbutaline in the organic phase and β-CD in the aqueous phase. Five β-CD derivatives, namely: methyl-β-cyclodextrin (Me-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), 2-hydroxyethyl-β-cyclodextrin (2-HE-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and (4-sulfobutylether)-β-cyclodextrin (SBE-β-CD) were used as hydrophilic selectors, respectively. Process variables affecting extraction efficiency were investigated, namely influence of the type of organic solvents and β-CD derivatives, concentrations of selectors and terbutaline enantiomers, pH, and temperature. Experimental results show that the efficiency of extraction depends, often strongly, on process variables. All five β-CD derivatives studied preferentially extract the more biologically active (R)-terbutaline from the organic phase; HP-β-CD has the strongest recognition ability. The maximum enantioselectivity (α) of 1.42 was achieved under optimal conditions: pH 7.0 and temperature of 5°C. Utilization of the extraction method for separation of terbutaline enantiomers is expected to be cheap and easy to scale up to commercial scale.

[1] Ameyibor, E., & Stewart, J. T. (1997). Enantiomeric HPLC separation of selected chiral drugs using native and derivatized β-cyclodextrins as chiral mobile phase additives. Journal of Liquid Chromatography & Related Technologies, 20, 855–869. DOI: 10.1080/10826079708013658. http://dx.doi.org/10.1080/1082607970801365810.1080/10826079708013658Suche in Google Scholar

[2] Bechet, I., Paques, P., Fillet, M., Hubert, P., & Crommen, J. (1995). Chiral separation of basic drugs by capillary zone electrophoresis with cyclodextrin additives. Electrophoresis, 15, 818–823. DOI: 10.1002/elps.11501501115. http://dx.doi.org/10.1002/elps.1150150111510.1002/elps.11501501115Suche in Google Scholar

[3] Colera, M., Costero, A., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039. http://dx.doi.org/10.1016/j.tetasy.2005.06.03910.1016/j.tetasy.2005.06.039Suche in Google Scholar

[4] De Camp, W. H. (1989). The FDA perspective on the development of stereoisomers. Chirality, 1, 2–6. DOI: 10.1002/chir.530010103. http://dx.doi.org/10.1002/chir.53001010310.1002/chir.530010103Suche in Google Scholar

[5] Gratz, S. R., & Stalcup, A. M. (1998). Enantiomeric separations of terbutaline by CE with a sulfated β-cyclodextrin chiral selector: A quantitative binding study. Analytical Chemistry, 70, 5166–5171. DOI: 10.1021/ac980780i. http://dx.doi.org/10.1021/ac980780i10.1021/ac980780iSuche in Google Scholar

[6] Hallett, A. J., Kwant, G. J., & de Vries, J. G. (2009). Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds. Chemistry — A European Journal, 15, 2111–2120. DOI: 10.1002/chem.200800797. http://dx.doi.org/10.1002/chem.20080079710.1002/chem.200800797Suche in Google Scholar

[7] Hutt, A. J. (1991). Drug chirality: Impact on pharmaceutical regulation. Chirality, 3, 161–164. DOI: 10.1002/chir.530030 303. http://dx.doi.org/10.1002/chir.530030303Suche in Google Scholar

[8] Jiao, F. P., Chen, X. Q., Hu, W. G., Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors. Chemial Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4. http://dx.doi.org/10.2478/s11696-007-0041-410.2478/s11696-007-0041-4Suche in Google Scholar

[9] Kellner, K.-H., Blasch, A., Chmiel, H., Lämmerhofer, M., & Lindner, W. (1997). Enantioseparation of N-protected α-amino acid derivatives by liquid-liquid extraction technique employing stereoselective ion-pair formation with a carbamoylated quinine derivative. Chirality, 9, 268–273. DOI: 10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-L10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-LSuche in Google Scholar

[10] Keurentjes, J. T. F., Nabuurs, L. J. W. M., & Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-X. http://dx.doi.org/10.1016/0376-7388(95)00176-X10.1016/0376-7388(95)00176-XSuche in Google Scholar

[11] Kim, K. H., Kim, D. S., Hong, S.-P., & Keon, O. S. (2000). Reversed-phase high performance liquid chromatographic separation of the enantiomers of terbutaline by derivatization with 2,3,4,6-tetra-o-acetyl-β-D-glucopyranosyl isothio cyanate. Archives of Pharmacal Research, 23, 26–30. DOI: 10.1007/BF02976461. http://dx.doi.org/10.1007/BF0297646110.1007/BF02976461Suche in Google Scholar

[12] Kim, K. H., & Park, Y. H. (1998). Enantioselective inclusion between terbutaline enantiomers and hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 175, 247–253. DOI: 10.1016/S0378-5173(98)00278-6. http://dx.doi.org/10.1016/S0378-5173(98)00278-610.1016/S0378-5173(98)00278-6Suche in Google Scholar

[13] Koska, J., & Haynes, C. A. (2001). Modelling multiple chemical equilbria in chiral partition systems. Chemical Engineering Science, 56, 5853–5864. DOI: 10.1016/S0009-2509(00)00419-X. http://dx.doi.org/10.1016/S0009-2509(00)00419-X10.1016/S0009-2509(00)00419-XSuche in Google Scholar

[14] Liu, Y., You, C.-C., Wada, T., & Inoue, Y. (1999). Molecular recognition studies on supramolecular systems. 22. Size, shape, and chiral recognition of aliphatic alcohols by organoselenium-modified cyclodextrins. The Journal of Organic Chemistry, 64, 3630–3634. DOI: 10.1021/jo982483j. http://dx.doi.org/10.1021/jo982483j10.1021/jo982483jSuche in Google Scholar

[15] Maier, N. M., Franco, P., & Lindner, W. (2001). Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A, 906, 3–33. DOI: 10.1016/S0021-9673(00)00532-X. http://dx.doi.org/10.1016/S0021-9673(00)00532-X10.1016/S0021-9673(00)00532-XSuche in Google Scholar

[16] O’Brien, T., Crocker, L., Thompson, R., Thompson, K., Toma, P. H., Conlon, D. A., Feibush, B., Moeder, C., Bicker, G., & Grinberg, N. (1997). Mechanistic aspects of chiral discrimination on modified cellulose. Analytical Chemistry, 69, 1999–2007. DOI: 10.1021/ac961241l. http://dx.doi.org/10.1021/ac961241l10.1021/ac961241lSuche in Google Scholar

[17] Pietraszkiewicz, M., Koźbiał, M., & Pietraszkiewicz, O. (1998). Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from Dmannose. Journal of Membrane Science, 138, 109–113. DOI: 10.1016/S0376-7388(97)00218-4. http://dx.doi.org/10.1016/S0376-7388(97)00218-410.1016/S0376-7388(97)00218-4Suche in Google Scholar

[18] Prelog, V., Kovačević, M., & Egli, M. (1989). Lipophilic tartaric acid esters as enantioselective ionophores. Angewandte Chemie International Edition, 28, 1147–1152. DOI: 10.1002/anie.198911473. http://dx.doi.org/10.1002/anie.19891147310.1002/anie.198911473Suche in Google Scholar

[19] Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98, 1875–1918. DOI: 10.1021/cr970015o. http://dx.doi.org/10.1021/cr970015o10.1021/cr970015oSuche in Google Scholar PubMed

[20] Rouhi, A. M. (2003). Chiral business. Chemical & Engineering News, 81, 45–55. http://dx.doi.org/10.1021/cen-v081n018.p04510.1021/cen-v081n018.p045Suche in Google Scholar

[21] Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2006). Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. Journal of Chemical Technology and Biotechnology, 81, 588–597. DOI: 10.1002/jctb.1434. http://dx.doi.org/10.1002/jctb.143410.1002/jctb.1434Suche in Google Scholar

[22] Schuur, B., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2010). Experimental and modeling studies on the enantioseparation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid-liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 65, 4682–4690. DOI: 10.1016/j.ces.2010.05.015. http://dx.doi.org/10.1016/j.ces.2010.05.01510.1016/j.ces.2010.05.015Suche in Google Scholar

[23] Tan, B., Luo, G., & Wang, J. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021. http://dx.doi.org/10.1016/j.seppur.2006.08.02110.1016/j.seppur.2006.08.021Suche in Google Scholar

[24] Tan, B., Luo, G., & Wang, J. (2006). Enantioseperation of amino acids by co-extractants with di(2-ethylhexyl)phosphoric acid and tartaric acid derivatives. Tetrahedron: Asymmetry, 17, 883–891. DOI: 10.1016/j.tetasy.2006.01.038. http://dx.doi.org/10.1016/j.tetasy.2006.01.03810.1016/j.tetasy.2006.01.038Suche in Google Scholar

[25] Tang, K., Chen, Y., Huang, K., & Liu, J. (2007). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18, 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031. http://dx.doi.org/10.1016/j.tetasy.2007.09.03110.1016/j.tetasy.2007.09.031Suche in Google Scholar

[26] Tang, K., Chen, Y., & Liu, J. (2008). Resolution of zopiclone enantiomers by biphasic recognition chiral extraction. Separation and Purification Technology, 62, 681–686. DOI: 10.1016/j.seppur.2008.03.029. http://dx.doi.org/10.1016/j.seppur.2008.03.02910.1016/j.seppur.2008.03.029Suche in Google Scholar

[27] Tang, K., Song, L., Liu, Y., Pan, Y., & Jiang, X. (2010). Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chemical Engineering Journal, 158, 411–417. DOI: 10.1016/j.cej.2010.01.009. http://dx.doi.org/10.1016/j.cej.2010.01.00910.1016/j.cej.2010.01.009Suche in Google Scholar

[28] Tang, K., Yi, J., Liu, Y., Jiang, X., & Pan, Y. (2009). Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 64, 4081–4088. DOI: 10.1016/j.ces.2009.06.029. http://dx.doi.org/10.1016/j.ces.2009.06.02910.1016/j.ces.2009.06.029Suche in Google Scholar

[29] Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2009). Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. The Journal of Organic Chemistry, 74, 6526–6533. DOI: 10.1021/jo901002d. http://dx.doi.org/10.1021/jo901002d10.1021/jo901002dSuche in Google Scholar PubMed

[30] Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010. http://dx.doi.org/10.1016/j.seppur.2006.07.01010.1016/j.seppur.2006.07.010Suche in Google Scholar

[31] Wang, X., Zeng, H., Wei, Y., & Lin, J.-M. (2006). A reversible fluorescence sensor based on insoluble β-cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors and Actuators, B: Chemical, 114, 565–572. DOI: 10.1016/j.snb.2005.06.020. http://dx.doi.org/10.1016/j.snb.2005.06.02010.1016/j.snb.2005.06.020Suche in Google Scholar

[32] Zhou, S., Ouyang, J., Baeyens, W. R. G., Zhao, H., & Yang, Y. (2006). Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector. Journal of Chromatography A, 1130, 296–301. DOI: 10.1016/j.chroma.2006.05.055. http://dx.doi.org/10.1016/j.chroma.2006.05.05510.1016/j.chroma.2006.05.055Suche in Google Scholar PubMed

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0011-8/pdf
Button zum nach oben scrollen