Startseite Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa

  • Balbina García-Aguilar EMAIL logo , Antonio Ramirez , J. Jones und Michèle Heitz
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The emissions of methane (CH4), a powerful greenhouse gas (GES), contribute to the increase in GES concentration level in the atmosphere. For this reason, the importance of controlling CH4 emissions of anthropogenic origin has increased over the last decades. Physicochemical and biological processes are available for treating CH4. For this reason, such properties as the solubility of CH4 in aqueous solutions and organic solvents are of great relevance in different applications in environmental engineering and biotechnology. In this study, the solubility of CH4 was determined at 298 K and 101.3 kPa in organic solvents, such as polyoxyethylenesorbates (Tween 20, Tween 40, and Tween 60), and linear alcohols (methanol, ethanol, and butan-1-ol) alone and in their admixtures. Admixtures of methanol with butan-1-ol exhibited the highest solubility of CH4, of around 0.49 g m−3 of solvent, whereas the solubility of CH4 in linear alcohols varied from 0.167 g m−3 to 0.41 g m−3 of solvent. In the case of Tweens, CH4 solubility decreased with the hydrophilic-lipophilic balance (HLB) number.

[1] Abdulagatov, I. M., Bazaev, A. R., & Ramazanova, A. E. (1993). Volumetric properties and virial coefficients of (water+ methane). The Journal of Chemical Thermodynamics, 25, 249–259. DOI: 10.1006/jcht.1993.1024. http://dx.doi.org/10.1006/jcht.1993.102410.1006/jcht.1993.1024Suche in Google Scholar

[2] Anderberg, M. R. (1973). Cluster analysis for applications. New York, NY, USA: Academic Press. Suche in Google Scholar

[3] Atlas, R. M. (2004). Handbook of microbiological media (3rd ed., pp. 1270–1271). Boca Raton, FL, USA: CRC Press. http://dx.doi.org/10.1201/978142003972610.1201/9781420039726Suche in Google Scholar

[4] Boucher, O., Friedlingstein, P., Collins, B., & Shine, K. P. (2009). The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 4, 1–5. DOI: 10.1088/1748-9326/4/4/044007. http://dx.doi.org/10.1088/1748-9326/4/4/04400710.1088/1748-9326/4/4/044007Suche in Google Scholar

[5] Cornish, A., Nicholls, K. M., Scott, D., Hunter, B. K., Aston, W. J., Higgins, I. J., & Sanders, J. K. M. (1984). In vivo 13C NMR investigations of methanol oxidation by the obligate methanotroph Methylosinus trichosporium OB3b. Journal of General Microbiology, 130, 2565–2575. DOI: 10.1099/00221287-130-10-2565. 10.1099/00221287-130-10-2565Suche in Google Scholar

[6] Chapoy, A., Mohammadi, A. H., Richon, D., & Tohidi, B. (2004). Gas solubility measurement and modeling for methane-water and methane-ethane-n-butane-water systems at low temperature conditions. Fluid Phase Equilibria, 220, 111–119. DOI: 10.1016/j.fluid.2004.02.010. http://dx.doi.org/10.1016/j.fluid.2004.02.01010.1016/j.fluid.2004.02.010Suche in Google Scholar

[7] Cramer, S. D. (1984). Solubility of methane in brines from 0 to 300°C. Industrial & Engineering Chemistry Process Design and Development, 23, 533–538. DOI: 10.1021/i200026a021. http://dx.doi.org/10.1021/i200026a02110.1021/i200026a021Suche in Google Scholar

[8] Dhima, A., de Hemptinne, J.-C., & Moracchini, G. (1998). Solubility of light hydrocarbons and their mixtures in pure water under high pressure. Fluid Phase Equilibria, 145, 129–150. DOI: 10.1016/S0378-3812(97)00211-2. http://dx.doi.org/10.1016/S0378-3812(97)00211-210.1016/S0378-3812(97)00211-2Suche in Google Scholar

[9] Duan, Z., Møller, N., Greenberg, J., & Weare, J. H. (1992). The prediction of methane solubility in natural waters to high ionic strength from 0 to 250°C and from 0 to 1600 bar. Geochimica et Cosmochimica Acta, 56, 1451–1460. DOI: 10.1016/0016-7037(92)90215-5. http://dx.doi.org/10.1016/0016-7037(92)90215-510.1016/0016-7037(92)90215-5Suche in Google Scholar

[10] Environment Canada (2008). National inventory report 1990–2006; Greenhouse gas sources and sinks in Canada. Gatineau, QC, Canada: Environment Canada. Suche in Google Scholar

[11] Frolich, P. K., Tauch, E. J., Hogan, J. J., & Peer, A. A. (1931). Solubilities of gases in liquids at high pressure. Industrial & Engineering Chemistry, 23, 548–550. DOI: 10.1021/ie50257a019. http://dx.doi.org/10.1021/ie50257a01910.1021/ie50257a019Suche in Google Scholar

[12] Girard, M., Nikiema, J., Brzezinski, R., Buelna, G., & Heitz, M. (2009). A review of the environmental pollution originating from the piggery industry and of the available mitigation technologies: towards the simultaneous biofiltration of swine slurry and methane. Canadian Journal of Civil Engineering, 36, 1946–1957. DOI: 10.1139/L09-141. http://dx.doi.org/10.1139/L09-14110.1139/L09-141Suche in Google Scholar

[13] Gupta, A. K., Teja, A. S., Chai, X. S., & Zhu, J. Y. (2000). Henry’s constants of n-alkanols (methanol through nhexanol) in water at temperatures between 40°C and 90°C. Fluid Phase Equilibria, 170, 183–192. DOI: 10.1016/S0378-3812(00)00350-2. http://dx.doi.org/10.1016/S0378-3812(00)00350-210.1016/S0378-3812(00)00350-2Suche in Google Scholar

[14] Hai, M., Han, B., Yang, G., Yan, H., & Han, Q. (1999). Effect of NaCl, NaOH, and poly(ethylene oxide) on methane solubilization in sodium dodecyl sulfate solutions. Langmuir, 15, 1640–1643. DOI: 10.1021/la980626r. http://dx.doi.org/10.1021/la980626r10.1021/la980626rSuche in Google Scholar

[15] Haubrichs, R., & Widmann, R. (2006). Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Management, 26, 408–416. DOI: 10.1016/j.wasman.2005.11.008. http://dx.doi.org/10.1016/j.wasman.2005.11.00810.1016/j.wasman.2005.11.008Suche in Google Scholar

[16] Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., & Heimann, M. (1999). Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Journal of Geophysical Research, 104(D21), 26,137–26,160. DOI: 10.1029/1999JD900428. http://dx.doi.org/10.1029/1999JD90042810.1029/1999JD900428Suche in Google Scholar

[17] Khalil, M. A. K. (Ed.) (2000). Atmospheric methane. Its role in the global environment. Berlin, Germany: Springer 10.1007/978-3-662-04145-1Suche in Google Scholar

[18] Kiepe, J., Horstmann, S., Fisher, K., & Gmehling, J. (2003). Experimental determination and prediction of gas solubility data for methane + water solutions containing different monovalent electrolytes. Industrial & Engineering Chemistry Research, 42, 5392–5398. DOI: 10.1021/ie030386x. http://dx.doi.org/10.1021/ie030386x10.1021/ie030386xSuche in Google Scholar

[19] King, A. D., Jr. (2001). Solubilization of gases by poly(ethylene oxide)-poly(propylene oxide) triblock copolymers. Journal of Colloid and Interface Science, 244, 123–127. DOI: 10.1006/jcis.2001.7937. http://dx.doi.org/10.1006/jcis.2001.793710.1006/jcis.2001.7937Suche in Google Scholar

[20] King, A. D., Jr. (1992). Solubilization of gases by polyethoxylated lauryl alcohols. Journal of Colloid and Interface Science, 148, 142–147. DOI: 10.1016/0021-9797(92)90121-2. http://dx.doi.org/10.1016/0021-9797(92)90121-210.1016/0021-9797(92)90121-2Suche in Google Scholar

[21] King, A. D., Jr. (1990). Solubilization of gases by polyethoxylated nonyl phenols. Journal of Colloid and Interface Science, 137, 577–582. DOI: 10.1016/0021-9797(90)90431-M. http://dx.doi.org/10.1016/0021-9797(90)90431-M10.1016/0021-9797(90)90431-MSuche in Google Scholar

[22] Leigh Mascarelli, A. (2009). A sleeping giant? Nature Reports Climate Change, 3, 46–49. DOI: 10.1038/climate.2009.24. http://dx.doi.org/10.1038/climate.2009.2410.1038/climate.2009.24Suche in Google Scholar

[23] Lekvam, K., & Bishnoi, P. R. (1997). Dissolution of methane in water at low temperatures and intermediate pressure. Fluid Phase Equilibria, 131, 297–309. DOI: 10.1016/S0378-3812(96)03229-3. http://dx.doi.org/10.1016/S0378-3812(96)03229-310.1016/S0378-3812(96)03229-3Suche in Google Scholar

[24] Melse, R. W., & van der Werf, A. W. (2005). Biofiltration for mitigation of methane emission from animal husbandry. Environmental Science & Technology, 39, 5460–5468. DOI: 10.1021/es048048q. http://dx.doi.org/10.1021/es048048q10.1021/es048048qSuche in Google Scholar

[25] Morrison, T. J., & Billett, F. (1952). The salting-out of non-electrolytes. Part II. The effect of variation in nonelectrolyte. Journal of the Chemical Society, 3, 3819–3822. DOI: 10.1039/JR9520003819. 10.1039/jr9520003819Suche in Google Scholar

[26] Namiot, A. Y. (1961). In H. L. Clever, & C. L. Young (Eds.), Methane, Solubility data serie (1987, Vol. 27–28, pp. 14). Oxford, UK: Pergamon Press. Suche in Google Scholar

[27] Olivier, J. G. J., & Berdowski, J. J. M. (2001). Global emission sources and sinks. In J. Berdowski, R. Guicherit, & B.-J. Heij (Eds.), The climate system (pp. 177). Lisse, The Netherlands: A.A. Balkema Publishers. Suche in Google Scholar

[28] O’sullivan, T. D., & Smith, N. O. (1970). Solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125° and 100 to 600 atm. The Journal of Physical Chemistry, 74, 1460–1466. DOI: 10.1021/j100702a012. http://dx.doi.org/10.1021/j100702a01210.1021/j100702a012Suche in Google Scholar

[29] Prapaitrakul, W., & King, A. D., Jr. (1986). The solubility of gases in aqueous solutions of sodium 1-heptanesulfonate and sodium perfluorooctanoate. Journal of Colloid and Interface Science, 112, 387–395. DOI: 10.1016/0021-9797(86)90106-2. http://dx.doi.org/10.1016/0021-9797(86)90106-210.1016/0021-9797(86)90106-2Suche in Google Scholar

[30] Rettich, T. R., Handa, Y. P., Battino, R., & Wihelm, E. (1981). Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K. The Journal of Physical Chemistry, 85, 3230–3237. DOI: 10.1021/j150622a006. http://dx.doi.org/10.1021/j150622a00610.1021/j150622a006Suche in Google Scholar

[31] Scheutz, C., Bogner, J. E., De Visscher, A., Gebert, J., Hilge, H. A., Huber-Humer, M., Kjeldsen, P., & Spokas, K. A. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27, 409–455. DOI: 10.1177/0734242X09339325. http://dx.doi.org/10.1177/0734242X0933932510.1177/0734242X09339325Suche in Google Scholar

[32] Serra, M. C. C., Pessoa, F. L. P., & Palavra, A. M. F. (2006). Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria. The Journal of Chemical Thermodynamics, 38, 1629–1633. DOI: 10.1016/j.jct.2006.03.019. http://dx.doi.org/10.1016/j.jct.2006.03.01910.1016/j.jct.2006.03.019Suche in Google Scholar

[33] Ukai, T., Kodama, D., Miyazaki, J., & Kato, M. (2002). Solubility of methane in alcohols and saturated density at 280.15 K. Journal of Chemical & Engineering Data, 47, 1320–1323. DOI: 10.1021/je020108p. http://dx.doi.org/10.1021/je020108p10.1021/je020108pSuche in Google Scholar

[34] Wang, L.-K., Chen, G.-J., Han, G.-H., Guo, X.-Q., & Guo, T.-M. (2003). Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor. Fluid Phase Equilibria, 207, 143–154. DOI: 10.1016/S0378-3812(03)00009-8. http://dx.doi.org/10.1016/S0378-3812(03)00009-810.1016/S0378-3812(03)00009-8Suche in Google Scholar

[35] Wen, W.-Y., & Hung, J. H. (1970). Thermodynamics of hydrocarbon gases in aqueous tetraalkylammonium salt solutions. The Journal of Physical Chemistry, 74, 170–180. DOI: 10.1021/j100696a032. http://dx.doi.org/10.1021/j100696a03210.1021/j100696a032Suche in Google Scholar

[36] Zhang, Z.-Z., Gu, N., Cao, L., & Shu, X.-Q. (2009). Methane absorption and application of mixed organic aggregate prepared from Span80 and alkaline salt. Science in China Series E: Technological Sciences, 52, 2155–2160. DOI: 10.1007/s11431-009-0222-1. http://dx.doi.org/10.1007/s11431-009-0222-110.1007/s11431-009-0222-1Suche in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0008-3/html
Button zum nach oben scrollen