Startseite An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives

  • Abdelmounaim Safer EMAIL logo , Mustapha Rahmouni , François Carreaux , Ludovic Paquin , Olivier Lozach , Laurent Meijer und Jean Bazureau
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A series of nine 5-arylidenerhodanine derivatives was prepared in good yields and purity without the use of a solvent or catalyst under microwave-assisted condensation with some substituted isatins. All 5-arylidenerhodanines were evaluated as possible inhibitors of the CK1α/β, CDK5/p25, and GSK-3α/β kinases. None of them showed substantive inhibitory activity against these kinases when evaluated at the concentration of 10 μM.

[1] Andreasch, R. (1917). Über substituierte Rhodanine und einige ihrer Aldehydkondensationsprodukte. XIII. Mitteilung. Monatshefte für Chemie, 38, 121–139. DOI: 10.1007/BF01526473. http://dx.doi.org/10.1007/BF0152647310.1007/BF01526473Suche in Google Scholar

[2] Bach, S., Knockaert, M., Reinhardt, J., Lozach, O., Schmitt, S., Baratte, B., Koken, M., Coburn, S. P., Tang, L., Jiang, T., Liang, D.-C., Galons, H., Dierick, J.-F., Pinna, L. A., Meggio, F., Totzke, F., Schächtele, C., Lerman, A. S., Carnero, A., Wan, Y., Gray, N., & Meijer, L. (2005). Roscovitine targets, protein kinases and pyridoxal kinase. Journal of Biological Chemistry, 280, 31208–31219. DOI: 10.1074/jbc.M500806200. http://dx.doi.org/10.1074/jbc.M50080620010.1074/jbc.M500806200Suche in Google Scholar PubMed

[3] Bapodra, A. H., Bharmal, F., & Parekh, H. (2002). Synthesis and biological activity of 2-(3′,5′-dibromo-2′-hydroxyphenyl)-3-aryl-5H/methyl/carboxymethyl-4-thiazolidinones. Indian Journal of Pharmaceutical Sciences, 64, 501–504. Suche in Google Scholar

[4] Bao, L., & Kimzey, A. (2004). Photochemotherapeutic compounds for use in treatment of Pin1-associated states. WO Patent No. WO2004093803. Geneva, Switzerland: World Intellectual Property Organization. Suche in Google Scholar

[5] Blackwell, H. E. (2003). Out of the oil bath and into the oven-microwave-assisted combinatorial chemistry heats up. Organic & Biomolecular Chemistry, 1, 1251–1255. DOI: 10.1039/b301432k. http://dx.doi.org/10.1039/b301432k10.1039/b301432kSuche in Google Scholar PubMed

[6] Bourahla, K., Derdour, A., Rahmouni, M., Carreaux, F., & Bazureau, J. P. (2007). A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation. Tetrahedron Letters, 48, 5785–5789. DOI: 10.1016/j.tetlet.2007.06.078. http://dx.doi.org/10.1016/j.tetlet.2007.06.07810.1016/j.tetlet.2007.06.078Suche in Google Scholar

[7] Brown, F. C. (1961). 4-Thiazolidinones. Chemical Reviews, 61, 463–521. DOI: 10.1021/cr60213a002. http://dx.doi.org/10.1021/cr60213a00210.1021/cr60213a002Suche in Google Scholar

[8] Bulic, B., Pickhardt, M., Schmidt, B., Mandelkow, E.-M., Waldmann, H., & Mandelkow, E. (2009). Development of tau aggregation inhibitors for Alzheimer’s disease. Angewandte Chemie International Edition, 48, 1740–1752. DOI: 10.1002/anie.200802621. http://dx.doi.org/10.1002/anie.20080262110.1002/anie.200802621Suche in Google Scholar PubMed

[9] Carlson, E. E., May, J. F., & Kiessling, L. L. (2006). Chemical probes of UDP-galactopyranose mutase. Chemistry & Biology, 13, 825–837. DOI: 10.1016/j.chembiol.2006.06.007. http://dx.doi.org/10.1016/j.chembiol.2006.06.00710.1016/j.chembiol.2006.06.007Suche in Google Scholar PubMed

[10] Commarmot, R., Didenot, D., & Gardais, J.-F. (1985). Appareil de minéralisation pour le traitement individuel, de façon automatique, d’échantillons de produits placés dans des récipients. FR Patent No. FR2560686. Paris, France: Institut National de la Propriété Industrielle. Suche in Google Scholar

[11] Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T., & Yuan, J. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL. Nature Cell Biology, 3, 173–182. DOI: 10.1038/35055085. http://dx.doi.org/10.1038/3505508510.1038/35055085Suche in Google Scholar PubMed

[12] Edwards, B. S., Bologa, C., Young, S. M., Balakin, K. V., Prossnitz, E. R., Savchuck, N. P., Sklar, L. A., & Oprea, T. I. (2005). Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Molecular Pharmacology, 68, 1301–1310. DOI: 10.1124/mol.105.014068. http://dx.doi.org/10.1124/mol.105.01406810.1124/mol.105.014068Suche in Google Scholar PubMed

[13] Fujishima, H., & Tsubota, K. (2002). Improvement of corneal fluorescein staining in post cataract surgery of diabetic patients by an oral aldose reductase inhibitor, ONO-2235. British Journal of Ophtalmology, 86, 860–863. DOI: 10.1136/bjo.86.8.860. http://dx.doi.org/10.1136/bjo.86.8.86010.1136/bjo.86.8.860Suche in Google Scholar PubMed PubMed Central

[14] Gaonkar, S. L., & Shimizu, H. (2010). Microwave-assisted synthesis of the antihyperglycemic drug rosiglitazone. Tetrahedron, 66, 3314–3317. DOI: 10.1016/j.tet.2010.03.006. http://dx.doi.org/10.1016/j.tet.2010.03.00610.1016/j.tet.2010.03.006Suche in Google Scholar

[15] Gränacher, C., & Mahal, A. (1923). Über die verwendung des rhodanins zu organischen synthesen III. Derivate des oxindols. Helvetica Chimica Acta, 6, 467–482. DOI: 10.1002/hlca.19230060149. http://dx.doi.org/10.1002/hlca.1923006014910.1002/hlca.19230060149Suche in Google Scholar

[16] Grant, E. B., Guiadeen, D., Baum, E. Z., Foleno, B. D., Jin, H., Montenegro, D. A., Nelson, E. A., Bush, K., & Hlasta, D. J. (2000). The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters, 10, 2179–2182. DOI: 10.1016/S0960-894X(00)00444-3. http://dx.doi.org/10.1016/S0960-894X(00)00444-310.1016/S0960-894X(00)00444-3Suche in Google Scholar

[17] Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N., & Shigeta, Y. (2006). Long-term clinical effects of Epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care, 29, 1538–1544. DOI: 10.2337/dc05-2370. http://dx.doi.org/10.2337/dc05-237010.2337/dc05-2370Suche in Google Scholar

[18] Hu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., Tiyanont, K., Fang, X., Wu, T., & Walker, S. (2004). Identification of selective inhibitors for the glucosyltransferase MurG via high-throughput screening. Chemistry & Biology, 11, 703–711. DOI: 10.1016/j.chembiol.2004.02.024. http://dx.doi.org/10.1016/j.chembiol.2004.02.02410.1016/j.chembiol.2004.02.024Suche in Google Scholar

[19] Jacquault, P. (1993). Procédé de mesure de la température d’un échantillon placé dans un récipient d’un appareil d’application de micro-ondes et appareil mettant en oeuvre ledit procédé. FR Patent No. FR2685478. Paris, France: Institut National de la Propriété Industrielle. Suche in Google Scholar

[20] Johnson, S. L., Chen, L.-H., Harbach, R., Sabet, M., Savinov, A., Cotton, N. J. H., Strongin, A., Guiney, D., & Pellecchia, M. (2008). Rhodanine derivatives as selective protease inhibitors against bacterial toxins. Chemical Biology & Drug Design, 71, 131–139. DOI: 10.1111/j.1747-0285.2007.00617.x. http://dx.doi.org/10.1111/j.1747-0285.2007.00617.x10.1111/j.1747-0285.2007.00617.xSuche in Google Scholar

[21] Jones, H. A., & Hann, R. M. (1928). The condensation of rhodanic acids with 5-nitro-isatin. Rhodanal-Δ-5,3′-5′-nitrooxindoles. Journal of the American Chemical Society, 50, 2491–2493. DOI: 10.1021/ja01396a025. http://dx.doi.org/10.1021/ja01396a02510.1021/ja01396a025Suche in Google Scholar

[22] Lanni, T. B., Jr., Greene, K. L., Kolz, C. N., Para, K. S., Visnick, M., Mobley, J. L., Dudley, D. T., Baginski, T. J., & Liimatta, M. B. (2007). Design and synthesis of phenethyl benzo[1,4]oxazine-3-ones as potent inhibitors of PI3Kinaseγ. Bioorganic and Medicinal Chemistry Letters, 17, 756–760. DOI: 10.1016/j.bmcl.2006.10.080. http://dx.doi.org/10.1016/j.bmcl.2006.10.08010.1016/j.bmcl.2006.10.080Suche in Google Scholar

[23] Larhed, M., & Hallberg, A. (2001). Microwave-assisted high-speed chemistry: a new technique in drug discovery. Drug Discovery Today, 6, 406–416. DOI: 10.1016/S1359-6446(01)01735-4. http://dx.doi.org/10.1016/S1359-6446(01)01735-410.1016/S1359-6446(01)01735-4Suche in Google Scholar

[24] Lesyk, R. B., & Zimenkovsky, B. S. (2004). 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Current Organic Chemistry, 8, 1547–1577. DOI: 10.2174/1385272043369773. http://dx.doi.org/10.2174/138527204336977310.2174/1385272043369773Suche in Google Scholar

[25] Lohray, B. B., Bhushan, V., Rao, P. B., Madhavan, G. R., Murali, N., Rao, K. N., Reddy, K. A., Rajesh, B. M., Reddy, P. G., Chakrabarti, R., & Rajagopalan, R. (1997). Novel indole containing thiazolidinedione derivatives as potent euglycemic and hypolipidaemic agents. Bioorganic & Medicinal Chemistry Letters, 7, 785–788. DOI: 10.1016/S0960-894X(97)00118-2. http://dx.doi.org/10.1016/S0960-894X(97)00118-210.1016/S0960-894X(97)00118-2Suche in Google Scholar

[26] Loupy, A. (Ed.) (2006). Microwave in organic chemistry (2nd ed.). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[27] Mallick, S. K., Martin, A. R., & Lingard, R. G. (1971). Synthesis and antimicrobial evaluation of some 5-(5-nitrofurylidene) rhodanines, 5-(5-nitrofurylidene)thiazolidine-2,4-diones, and their vinylogs. Journal of Medicinal Chemistry, 14, 528–532. DOI: 10.1021/jm00288a017. http://dx.doi.org/10.1021/jm00288a01710.1021/jm00288a017Suche in Google Scholar

[28] McKee, T. D., Suto, R. K., Tibbitts, T., & Sowadski, J. (2004). Pin-1 modulating compounds and methods of use thereof. WO Patent No.WO2004028535. Geneva, Switzerland: World Intellectual Property Organization. Suche in Google Scholar

[29] Melnick, A. M., MacKerell, A. D., Jr., & Prive, G. G. (2008). Small molecule inhibitors of BCL6. WO Patent No. WO 2008066887. Geneva, Switzerland: World Intellectual Property Organization. Suche in Google Scholar

[30] Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S., & Sohda, T. (1991). Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chemical & Pharmaceutical Bulletin, 39, 1440–1445. 10.1248/cpb.39.1440Suche in Google Scholar

[31] Ohishi, Y., Mukai, T., Nagahara, M., Yajima, M., Kajikawa, N., Miyahara, K., & Takano, T. (1990). Preparations of 5-alkylmethylidene-3-carboxymethylrhodanine derivatives and their aldose reductase inhibitory activity. Chemical & Pharmaceutical Bulletin, 38, 1911–1919. 10.1248/cpb.38.1911Suche in Google Scholar

[32] Pardasani, R. T., Pardasani, P., Sherry, D., & Chaturvedi, V. (2001). Synthetic and antibacterial studies of rhodanine derivatives with indole-2,3-diones. Indian Journal of Chemistry Section B, 40, 1275–1278. Suche in Google Scholar

[33] Polychronopoulos, P., Magiatis, P., Skaltsounis, A.-L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S. M., Pearl, L., Leost, M., Greengard, P., & Meijer, L. (2004). Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. Journal of Medicinal Chemistry, 47, 935–946. DOI: 10.1021/jm031016d. http://dx.doi.org/10.1021/jm031016d10.1021/jm031016dSuche in Google Scholar

[34] Primot, A., Baratte, B., Gompel, M., Borgne, A., Liabeuf, S., Romette, J.-L., Jho, E.-H., Costantini, F., & Meijer, L. (2000). Purification of GSK-3 by affinity chromatography on immobilized axin. Protein Expression and Purification, 20, 394–404. DOI: 10.1006/prep.2000.1321. http://dx.doi.org/10.1006/prep.2000.132110.1006/prep.2000.1321Suche in Google Scholar

[35] Reinhardt, J., Ferandin, Y., & Meijer, L. (2007). Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression and Purification, 54, 101–109. DOI: 10.1016/j.pep.2007.02.020. http://dx.doi.org/10.1016/j.pep.2007.02.02010.1016/j.pep.2007.02.020Suche in Google Scholar

[36] Sawayama, T., Kinugasa, H., & Nishimura, H. (1976). The structures of isatylidene 3 mercaptoacetic acid and its related compounds. Chemical & Pharmaceutical Bulletin, 24, 2305–2311. 10.1248/cpb.24.2305Suche in Google Scholar

[37] Sim, M. M., Ng, S. B., Buss, A. D., Crasta, S. C., Goh, K. L., & Lee, S. K. (2002). Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/l-alanine ligase. Bioorganic & Medicinal Chemistry Letters, 12, 697–699. DOI: 10.1016/S0960-894X(01)00832-0. http://dx.doi.org/10.1016/S0960-894X(01)00832-010.1016/S0960-894X(01)00832-0Suche in Google Scholar

[38] Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P., & Sim, M. M. (2001). Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorganic & Medicinal Chemistry Letters, 11, 91–94. DOI: 10.1016/S0960-894X(00)00610-7. http://dx.doi.org/10.1016/S0960-894X(00)00610-710.1016/S0960-894X(00)00610-7Suche in Google Scholar

[39] Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D., & Zacchino, S. A. (2007). Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorganic & Medicinal Chemistry, 15, 484–494. DOI: 10.1016/j.bmc.2006.09.038. http://dx.doi.org/10.1016/j.bmc.2006.09.03810.1016/j.bmc.2006.09.038Suche in Google Scholar

[40] Swewczuk, L. M., Saldanha, S. A., Ganguly, S., Bowers, E. M., Javoroncov, M., Karanam, B., Culhane, J. C., Holbert, M. A., Klein, D. C., Abagyan, R., & Cole, P. A. (2007). De novo discovery of serotonin N-acetyltransferase inhibitors. Journal of Medicinal Chemistry, 50, 5330–5338. DOI: 10.1021/jm0706463. http://dx.doi.org/10.1021/jm070646310.1021/jm0706463Suche in Google Scholar

[41] Turkevich, N. M., Agaev, K. A., Steblyuk, P. N., & Sementsiv, G. N. (1982). Thiazolidines with adamantyl substituents. Pharmaceutical Chemistry Journal, 16, 668–670. http://dx.doi.org/10.1007/BF0077217510.1007/BF00772175Suche in Google Scholar

[42] Whitesitt, C. A., Simon, R. L., Reel, J. K., Sigmund, S. K., Phillips, M. L., Shadle, J. K., Heinz, L. J., Koppel, G. A., Hunden, D. C., Lifer, S. L., Berry, D., Ray, J., Little, S. P., Liu, X., Marshall, W. S., & Panetta, J. A. (1996). Synthesis and structure-activity relationships of benzophenones as inhibitors of cathepsin D. Bioorganic & Medicinal Chemistry Letters, 6, 2157–2162. DOI: 10.1016/0960-894X(96)00393-9. http://dx.doi.org/10.1016/0960-894X(96)00393-910.1016/0960-894X(96)00393-9Suche in Google Scholar

[43] Yang, D.-H., Chen, Z.-C., Chen, S.-Y., & Zheng, Q.-G. (2003). A convenient synthesis of 5-benzylidenethiazolidine-2,4-diones under microwave irradiation without solvent. Journal of Chemical Research, 2003, 330–331. DOI: 10.3184/030823403 103174272. http://dx.doi.org/10.3184/03082340310317427210.3184/030823403103174272Suche in Google Scholar

[44] Zapadnyuk, V. I. (1966). Anticonvulsive drugs, their classification and mechanism of action. Vrachebnoe Delo (Kiev), 10, 71–75. Suche in Google Scholar

[45] Zapadnyuk, V. I. (1962). The dependence of anticonvulsion activity and toxicity of thiohydantoin and rhodanine derivatives on the chemical structure. Farmatsevticheskii Zhurnal (Kiev), 17, 36–41. Suche in Google Scholar

[46] Zawahir, Z., Dayam, R., Deng, J., Pereira, C., & Neamati, N. (2009). Pharmacophore guided discovery of smallmolecule human apurinic/apyrimidinic endonuclease 1 inhibitors. Journal of Medicinal Chemistry, 52, 20–32. DOI: 10.1021/jm800739m. http://dx.doi.org/10.1021/jm800739m10.1021/jm800739mSuche in Google Scholar PubMed

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0104-9/html
Button zum nach oben scrollen