Startseite Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics

  • Mostafa Ahmadzadeh ORCID logo , Alex Scrimshire , Lucy Mottram , Martin C. Stennett , Neil C. Hyatt , Paul A. Bingham und John S. McCloy
Veröffentlicht/Copyright: 20. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The crystallization of iron-containing sodium silicate phases holds particular importance, both in the management of high-level nuclear wastes and in geosciences. Here, we study three as-quenched glasses and their heat-treated chemical analogs, NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 (with nominal stoichiometries from feldspathoid, pyroxene, and feldspar mineral groups, i.e., Si/Fe = 1, 2, and 3, respectively) using various techniques. Phase analyses revealed that as-quenched NaFeSiO4 could not accommodate all Fe in the glass phase (some Fe crystallizes as Fe3O4), whereas as-quenched NaFeSi2O6 and NaFeSi3O8 form amorphous glasses. NaFeSi2O6 glass is the only composition that crystallizes into its respective isochemical crystalline polymorph, i.e., aegirine, upon isothermal heat-treatment. As revealed by Mössbauer spectroscopy, iron is predominantly present as fourfold-coordinated Fe3+ in all glasses, though it is present as sixfold-coordinated Fe3+ in the aegirine crystals (NaFeSi2O6), as expected from crystallography. Thus, Na-Fe silicate can form a crystalline phase in which it is octahedrally coordinated, even though it is mostly tetrahedrally coordinated in the parent glasses. Thermal behavior, magnetic properties, iron redox state (including Fe K-edge X‑ray absorption), and vibrational properties (Raman spectra) of the above compositions are discussed.

Acknowledgments

The authors thank Daniel Neuville from the Institut de Physique du Globe de Paris (IPGP) for help with Raman spectroscopy measurements and interpretation.

  1. Funding

    This research was supported by the Department of Energy Waste Treatment and Immobilization Plant Federal Project Office, contract numbers DE-EM002904 and 89304017CEM000001, under the direction of Albert A. Kruger. A portion of this research used 6-BM of the National Synchrotron Light Source II (NSLSII), a U.S. DOE OS user facility operated for the DOE OS by Brookhaven National Laboratory (BNL) under contract DE-SC0012704. This work was, in part, performed in the HADES/MIDAS facility at the University of Sheffield, established with financial support of the Department for Business, Energy & Industrial Strategy and Engineering and Physical Sciences Research Council (EPSRC) under grant EP/T011424/1 (Hyatt et al. 2020). The U.K. portion of the research was sponsored, in part, by the UK Engineering and Physical Sciences Research Council under grants EP/N017870/1 and EP/S01019X/1.

References cited

Ahmadzadeh, M., Marcial, J., and McCloy, J. (2017) Crystallization of iron-containing sodium aluminosilicate glasses in the NaAlSiO4-NaFeSiO4 join. Journal of Geophysical Research: Solid Earth, 122, 2504–2524.10.1002/2016JB013661Suche in Google Scholar

Ahmadzadeh, M., Olds, T.A., Scrimshire, A., Bingham, P.A., and McCloy, J.S. (2018) Structure and properties of Na5FeSi4O12 crystallized from 5Na2O-Fe2O3-8SiO2 glass. Acta Crystallographica, C74, 1595–1602.10.1107/S2053229618014353Suche in Google Scholar PubMed

Baert, K., Meulebroeck, W., Wouters, H., Cosyns, P., Nys, K., Thienpont, H., and Terryn, H. (2011) Using Raman spectroscopy as a tool for the detection of iron in glass. Journal of Raman Spectroscopy, 42, 1789–1795.10.1002/jrs.2935Suche in Google Scholar

Bailey, D.K., and Schairer, J.F. (1963) Crystallization of the rock-forming silicates in the system Na2O-Fe2O3-Al2O3-SiO2 at 1 atmosphere. Carnegie Institution of Washington Year Book, 62, 124–131.Suche in Google Scholar

Bailey, D.K., and Schairer, J.F. (1966) The system Na2O-Al2O3-Fe2O3-SiO2 at 1 atmosphere, and the petrogenesis of alkaline rocks. Journal of Petrology, 7, 114–170.10.1093/petrology/7.1.114Suche in Google Scholar

Baum, E., Treutmann, W., Behruzi, M., Lottermoser, W., and Amthauer, G. (1988) Structural and magnetic properties of the clinopyroxenes NaFeSi2O6 and LiFeSi2O6 Zeitschrift für Kristallographie—Crystalline Materials, 183, 273.10.1524/zkri.1988.183.14.273Suche in Google Scholar

Bell, A.M.T., and Henderson, C.M.B. (1994) Rietveld refinement of the structures of dry-synthesized MFeIIISi2O6 leucites M = K, Rb, Cs) by synchrotron X‑ray powder diffraction. Acta Crystallographica, C50, 1531–1536.10.1107/S0108270194004014Suche in Google Scholar

Bentzen, J.J. (1983) Three crystalline polymorphs of KFeSiO4 potassium ferrisilicate. Journal of the American Ceramic Society, 66, 475–479.10.1111/j.1151-2916.1983.tb10584.xSuche in Google Scholar

Bingham, P.A., Hannant, O.M., Reeves-McLaren, N., Stennett, M.C., and Hand, R.J. (2014) Selective behaviour of dilute Fe3+ ions in silicate glasses: an Fe K-edge EXAFS and XANES study. Journal of Non-Crystalline Solids, 387, 47–56.10.1016/j.jnoncrysol.2013.12.034Suche in Google Scholar

Bowen, N.L., Schairer, J.F., and Willems, H.W.V. (1930) The ternary system; Na2SiO3-Fe2O3-SiO2 American Journal of Science, 20, 405–455.10.2475/ajs.s5-20.120.405Suche in Google Scholar

Bychkov, A.M., Borisov, A., Khramov, D.A., and Urusov, V. (1993) Change in the immediate environment of Fe atoms during the melting of minerals (review). Geochemistry International, 30, 1–25.Suche in Google Scholar

Cameron, M., Sueno, S., Prewitt, C., and Papike, J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58, 594–618.Suche in Google Scholar

Clark, J.R., Appleman, D.E., and Papike, J.J. (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineralogical Society of America Special paper, 2, 31–50.Suche in Google Scholar

Cochain, B., Neuville, D.R., Richet, P., Henderson, G.S., and Pinet, O. (2008) Determination of iron redox ratio in borosilicate glasses and melts from Raman spectra. Atalante 2008: Nuclear fuel cycle for a sustainable future, p. O4-11, France.10.1557/PROC-1124-Q03-02Suche in Google Scholar

Cochain, B., Neuville, D.R., Henderson, G.S., McCammon, C.A., Pinet, O., and Richet, P. (2012) Effects of the Iron Content and Redox State on the Structure of Sodium Borosilicate Glasses: A Raman, Mössbauer and Boron K-edge XANES Spectroscopy Study. Journal of the American Ceramic Society, 95, 962–971.10.1111/j.1551-2916.2011.05020.xSuche in Google Scholar

Cottrell, E., Kelley, K.A., Lanzirotti, A., and Fischer, R.A. (2009) High-precision determination of iron oxidation state in silicate glasses using XANES. Chemical Geology, 268, 167–179.10.1016/j.chemgeo.2009.08.008Suche in Google Scholar

Deer, W.A., Howie, R.A., and Zussman, J. (1992) An Introduction to Rock-Forming Minerals. Longman.Suche in Google Scholar

Deer, W.A., Howie, R.A., Wise, W.S., and Zussman, J. (2004) Rock-Forming Minerals: Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites. The Geological Society, London.Suche in Google Scholar

Deshkar, A., Ahmadzadeh, M., Scrimshire, A., Han, E., Bingham, P.A., Guillen, D., McCloy, J., and Goel, A. (2019) Crystallization behavior of iron- and boron-containing nepheline (Na2O·Al2O3·2SiO2 based model high-level nuclear waste glasses. Journal of the American Ceramic Society, 102, 1101–1121.10.1111/jace.15936Suche in Google Scholar

Di Genova, D., Vasseur, J., Hess, K.-U., Neuville, D.R., and Dingwell, D.B. (2017) Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts. Journal of Non-Crystalline Solids, 470, 78–85.10.1016/j.jnoncrysol.2017.05.013Suche in Google Scholar

Di Muro, A., Métrich, N., Mercier, M., Giordano, D., Massare, D., and Montagnac, G. (2009) Micro-Raman determination of iron redox state in dry natural glasses: Application to peralkaline rhyolites and basalts. Chemical Geology, 259, 78–88.10.1016/j.chemgeo.2008.08.013Suche in Google Scholar

Dyar, M.D. (1985) A review of MÖssbauer data on inorganic glasses; the effects of composition on iron valency and coordination. American Mineralogist, 70, 304–316.Suche in Google Scholar

Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A., and Sklute, E.C. (2006) Mössbauer spectroscopy of Earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34, 83–125.10.1146/annurev.earth.34.031405.125049Suche in Google Scholar

Farges, F., Lefrère, Y., Rossano, S., Berthereau, A., Calas, G., and Brown, G.E. Jr. (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. Journal of Non-Crystalline Solids, 344, 176–188.10.1016/j.jnoncrysol.2004.07.050Suche in Google Scholar

Farges, F., Rossano, S., Lefrère, Y., Wilke, M., and G. E. Brown, J. (2005) Iron in silicate glasses: a systematic analysis of pre-edge, XANES and EXAFS features. Physica Scripta, 2005, 957.10.1238/Physica.Topical.115a00957Suche in Google Scholar

Faust, G.T. (1936) The fusion relations of iron-orthoclase. American Mineralogist, 21, 735–763.Suche in Google Scholar

Fiege, A., Ruprecht, P., Simon, A.C., Bell, A.S., Göttlicher, J., Newville, M., Lanzirotti, T., and Moore, G. (2017) Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources. American Mineralogist, 102, 369–380.10.2138/am-2017-5822Suche in Google Scholar

Fleet, M.E., Herzberg, C.T., Henderson, G.S., Crozier, E.D., Osborne, M.D., and Scarfe, C.M. (1984) Coordination of Fe, Ga and Ge in high pressure glasses by Mössbauer, Raman and X‑ray absorption spectroscopy, and geological implications. Geochimica et Cosmochimica Acta, 48, 1455–1466.10.1016/0016-7037(84)90402-2Suche in Google Scholar

Forder, S.D., Bingham, P.A., McGann, O.J., Stennett, M.C., and Hyatt, N.C. (2013) Mössbauer studies of materials used to immobilise industrial wastes. Hyperfine Interactions, 217, 83–90.10.1007/978-94-007-6491-0_11Suche in Google Scholar

Galoisy, L., Calas, G., and Arrio, M.A. (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chemical Geology, 174, 307–319.10.1016/S0009-2541(00)00322-3Suche in Google Scholar

Henderson, G.S., Fleet, M.E., and Bancroft, G.M. (1984) An X‑ray scattering study of vitreous KFeSi3O8 and NaFeSi3O8 and reinvestigation of vitreous SiO2 using quasi-crystalline modelling. Journal of Non-Crystalline Solids, 68, 333–349.10.1016/0022-3093(84)90015-2Suche in Google Scholar

Honma, T., Togashi, T., and Komatsu, T. (2012) Spinel-type crystals based on LiFeSiO4 with high electrical conductivity for lithium ion battery formed by melt-quenching method. Journal of the Ceramic Society of Japan, 120, 93–97.10.2109/jcersj2.120.93Suche in Google Scholar

Hrma, P.R., Vienna, J.D., Mika, M., Crum, J.V., and Piepel, G.F. (1999) Liquidus temperature data for DWPF glass, 72 pages. PNNL-11790, Pacific Northwest National Lab., Richland, Washington.10.2172/6833Suche in Google Scholar

Hyatt, N.C., Corkhill, C.L., Stennett, M.C., Hand, R.J., Gardner, L.J., and Thorpe, C.L. (2020) The HADES facility for high activity decommissioning engineering and science: part of the UK national nuclear user facility. IOP Conference Series: Materials Science and Engineering, 818, 012022.10.1088/1757-899X/818/1/012022Suche in Google Scholar

Jackson, W.E., Farges, F., Yeager, M., Mabrouk, P.A., Rossano, S., Waychunas, G.A., Solomon, E.I., and Brown, G.E. Jr. (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: Implications for the coordination environment of Fe(II) in silicate melts. Geochimica et Cosmochimica Acta, 69, 4315–4332.10.1016/j.gca.2005.01.008Suche in Google Scholar

Jantzen, C.M. (2011) Development of glass matrices for high level radioactive wastes. In M.I. Ojovan, Ed., Handbook of Advanced Radioactive Waste Conditioning Technologies, p. 230–292. Woodhead Publishing.10.1533/9780857090959.2.230Suche in Google Scholar

Jantzen, C.M., and Bickford, D.F. (1984) Leaching of devitrified glass containing simulated SRP nuclear waste. MRS Proceedings, 44, 135.10.1557/PROC-44-135Suche in Google Scholar

Jantzen, C.M., and Brown, K.G. (2007) Predicting the spinel–nepheline liquidus for application to nuclear waste glass processing. Part II: quasicrystalline freezing point depression model. Journal of the American Ceramic Society, 90, 1880–1891.10.1111/j.1551-2916.2006.01028.xSuche in Google Scholar

Jantzen, C., and Edwards, T. (2015) Product/process (P/P) models for the defense waste processing facility (DWPF): Model ranges and validation ranges for future processing. SRNL-STI-2014-00320, Savannah River National Laboratory, Aiken, South Carolina.10.2172/1223202Suche in Google Scholar

Jantzen, C.M., Bickford, D.F., and Karraker, D.G. (1984) Time-temperature-transformation [TTT] kinetics in SRL Waste Glass. In G.G. Wicks and W.A. Ross, Eds., Advances in Ceramics 85, p. 30–38. American Ceramic Society, Columbus, Ohio.Suche in Google Scholar

Jantzen, C.M., Brown, K.G., and Pickett, J.B. (2010) Durable glass for thousands of years. International Journal of Applied Glass Science, 1, 38–62.10.1111/j.2041-1294.2010.00007.xSuche in Google Scholar

Jayasuriya, K.D., O’Neill, H.St.C., Berry, A.J., and Campbell, S.J. (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. American Mineralogist, 89, 1597–1609.10.2138/am-2004-11-1203Suche in Google Scholar

Jeoung, J.-S., Poisl, W.H., Weinberg, M.C., Smith, G.L., and Li, H. (2001) Effect of oxidation state of iron on phase separation in sodium silicate glasses. Journal of the American Ceramic Society, 84, 1859–1864.10.1111/j.1151-2916.2001.tb00927.xSuche in Google Scholar

Kim, D.S., Hrma, P., Smith, D.E., and Schweiger, M.J. (1994) Crystallization in simulated glasses from hanford high-level nuclear waste composition range. Ceramic Transactions, 39, 179–189.Suche in Google Scholar

Kim, D.S., Schweiger, M.J., Rodriguez, C.P., Lepry, W.C., Lang, J.B., Crum, J.D., Vienna, J.D., Johnson, F.C., Marra, J.C., and Peeler, D.K. (2011) Formulation and characterization of waste glasses with varying processing temperature. PNNL-20774, Pacific Northwest National Laboratory, Richland, Washington.10.2172/1028572Suche in Google Scholar

Komatsu, T., and Soga, N. (1980) ESR and Mössbauer studies of crystallization process of sodium iron silicate glass. The Journal of Chemical Physics, 72, 1781–1785.10.1063/1.439293Suche in Google Scholar

Kruger, A.A., Pegg, I.L., Chaudhuri, M., Gong, W., Gan, H., Matlack, K.S., Bardakci, T., and Kot, W. (2013) Final report—melt rate enhancement for high aluminum HLW glass formulation. VSL-08R1360-1, Hanford Site (HNF), Richland, Washington.10.2172/1105973Suche in Google Scholar

Lange, R.A., Carmichael, I.S.E., and Stebbins, J.F. (1986) Phase transitions in leucite (KAlSi2O6 orthorhombic KAlSiO4 and their iron analogues (KFeSi2O6 KFeSiO4 American Mineralogist, 71, 937–945.Suche in Google Scholar

Larsen, L.M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq Intrusion, South Greenland. Journal of Petrology, 17, 258–290.10.1093/petrology/17.2.258Suche in Google Scholar

Lebedeva, Y.S., Pushcharovsky, D.Y., Pasero, M., Merlino, S., Kashaev, A.A., Taroev, V.K., Goettlicher, J., Kroll, H., Pentinghaus, H., Suvorova, L.F., and others. (2003) Synthesis and crystal structure of low ferrialuminosilicate sanidine. Crystallography Reports, 48, 919–924.10.1134/1.1627432Suche in Google Scholar

Liu, Q., and Lange, R.A. (2006) The partial molar volume of Fe2O3 in alkali silicate melts: Evidence for an average Fe3+ coordination number near five. American Mineralogist, 91, 385–393.10.2138/am.2006.1902Suche in Google Scholar

Long, D.A. (1977) Raman Spectroscopy. McGraw-Hill.Suche in Google Scholar

Lottermoser, W., Redhammer, G., Forcher, K., Amthauer, G., Paulus, W., André, G., and Treutmann, W. (1998) Single crystal Mössbauer and neutron powder diffraction measurements on the synthetic clinopyroxene Li-acmite LiFeSi2O6 Zeitschrift für Kristallographie—Crystalline Materials, 213, 101–107.10.1524/zkri.1998.213.2.101Suche in Google Scholar

Luo, Y.-R., and Kerr, J.A. (2006) Bond dissociation energies. In D.R. Lide, Ed. CRC Handbook of Chemistry and Physics, p. 9-54–9-59. Taylor and Francis, Boca Raton, Florida.Suche in Google Scholar

Magnien, V., Neuville, D.R., Cormier, L., Roux, J., Hazemann, J.L., Pinet, O., and Richet, P. (2006) Kinetics of iron redox reactions in silicate liquids: A high-temperature X‑ray absorption and Raman spectroscopy study. Journal of Nuclear Materials, 352, 190–195.10.1016/j.jnucmat.2006.02.053Suche in Google Scholar

Marcial, J., and McCloy, J. (2019) Role of short range order on crystallization of tectosilicate glasses: A diffraction study. Journal of Non-Crystalline Solids, 505, 131–143.10.1016/j.jnoncrysol.2018.10.050Suche in Google Scholar

Marcial, J., Ahmadzadeh, M., and McCloy, J.S. (2016) Effect of Li, Fe, and B addition on the crystallization behavior of sodium aluminosilicate glasses as analogues for hanford high level waste glasses. MRS Advances, 2, 549–555.10.1557/adv.2016.628Suche in Google Scholar

Montiel-Anaya, J.A., and Franco, V. (2019) FORC study of the ferromagnetic impurities in Na and K feldspars of “El Realejo” mine. AIP Advances, 9, 035038.10.1063/1.5080081Suche in Google Scholar

Mysen, B.O., and Richet, P. (2005) Silicate Glasses and Melts: Properties and Structure. Elsevier.Suche in Google Scholar

Mysen, B.O., Seifert, F., and Virgo, D. (1980) Structure and redox equilibria of iron-bearing silicate melts. American Mineralogist, 65, 867–884.Suche in Google Scholar

Nestola, F., Tribaudino, M., Boffa Ballaran, T., Liebske, C., and Bruno, M. (2007) The crystal structure of pyroxenes along the jadeite–hedenbergite and jadeite– aegirine joins. American Mineralogist, 92, 1492–1501.10.2138/am.2007.2540Suche in Google Scholar

Nytén, A., Kamali, S., Häggström, L., Gustafsson, T., and Thomas, J.O. (2006) The lithium extraction/insertion mechanism in Li2FeSiO4 Journal of Materials Chemistry, 16, 2266–2272.10.1039/B601184ESuche in Google Scholar

Oh, S.J., Cook, D.C., and Townsend, H.E. (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interactions, 112, 59–66.10.1023/A:1011076308501Suche in Google Scholar

Palmer, D.C. (1994) Stuffed derivatives of the silica polymorphs. Reviews in Mineralogy and Geochemistry, 29, 83–122.Suche in Google Scholar

Persson, K. (2014) Materials Data on LiFeSi3O8 (SG:2) by Materials Project. LBNL Materials Project; Lawrence Berkeley National Lab (LBNL), Berkeley, California.Suche in Google Scholar

Plaisted, T., Mo, F., Wilson, B., Young, C., and Hrma, P. (2000) Surface crystallization and composition of spinel and acmite in high-level waste glass. Ceramics Transactions, 119, 317–325.Suche in Google Scholar

Pokorny, R., and Hrma, P. (2014) Model for the conversion of nuclear waste melter feed to glass. Journal of Nuclear Materials, 445, 190–199.10.1016/j.jnucmat.2013.11.009Suche in Google Scholar

Rancourt, D. (1998) Recoil Mössbauer Spectral Analysis Software. Ottawa: Intelligent Scientific Applications Inc.Suche in Google Scholar

Sack, R.O., Carmichael, I.S.E., Rivers, M., and Ghiorso, M.S. (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contributions to Mineralogy and Petrology, 75, 369–376.10.1007/BF00374720Suche in Google Scholar

Shchipalkina, N.V., Pekov, I.V., Britvin, S.N., Koshlyakova, N.N., Vigasina, M.F., and Sidorov, E.G. (2019) A new mineral ferrisanidine, K[Fe3+Si3O8 the first natural feldspar with species-defining iron. Minerals, 9, 770.10.3390/min9120770Suche in Google Scholar

Vienna, J.D., Hrma, P., and Smith, D.E. (1996) Isothermal crystallization kinetics in simulated high-level nuclear waste glass. Proceedings of the Materials Research Society 465, 17–24. Cambridge University Press.10.1557/PROC-465-17Suche in Google Scholar

Wang, Z., Cooney, T.F., and Sharma, S.K. (1993) High temperature structural investigation of Na2O·0.5Fe2O3·3SiO2 and Na2O·FeO·3SiO2 melts and glasses. Contributions to Mineralogy and Petrology, 115, 112–122.10.1007/BF00712983Suche in Google Scholar

Wang, Z., Cooney, T.F., and Sharma, S.K. (1995) In situ structural investigation of iron-containing silicate liquids and glasses. Geochimica et Cosmochimica Acta, 59, 1571–1577.10.1016/0016-7037(95)00063-6Suche in Google Scholar

Weaver, J.L., Wall, N.A., and McCloy, J.S. (2015) Wet chemical and UV-Vis spectrometric iron speciation in quenched low and intermediate level nuclear waste glasses. MRS Proceedings, 1744, 93–100.10.1557/opl.2015.481Suche in Google Scholar

Weigel, C., Cormier, L., Galoisy, L., Calas, G., Bowron, D., and Beuneu, B. (2006) Determination of Fe3+ sites in a NaFeSi2O6 glass by neutron diffraction with isotopic substitution coupled with numerical simulation. Applied Physics Letters, 89, 141911.10.1063/1.2359532Suche in Google Scholar

Weigel, C., Cormier, L., Calas, G., Galoisy, L., and Bowron, D.T. (2008a) Intermediate-range order in the silicate network glasses NaFexAl1–xSi2O6 (x=0,0.5,0.8,1): A neutron diffraction and empirical potential structure refinement modeling investigation. Physical Review B, 78, 064202.10.1103/PhysRevB.78.064202Suche in Google Scholar

Weigel, C., Cormier, L., Calas, G., Galoisy, L., and Bowron, D.T. (2008b) Nature and distribution of iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR simulation. Journal of Non-Crystalline Solids, 354, 5378–5385.10.1016/j.jnoncrysol.2008.09.030Suche in Google Scholar

Wilke, M., Farges, F.O., Petit, P.-E., Brown, G.E. Jr., and Martin, F.O. (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. American Mineralogist, 86, 714–730.10.2138/am-2001-5-612Suche in Google Scholar

Wilke, M., Partzsch, G.M., Bernhardt, R., and Lattard, D. (2005) Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. Chemical Geology, 220, 143–161.10.1016/j.chemgeo.2005.03.004Suche in Google Scholar

Yamamoto, T. (2008) Assignment of pre-edge peaks in K-edge X‑ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-ray Spectrometry, 37, 572–584.10.1002/xrs.1103Suche in Google Scholar

Zanotto, E.D., and Cassar, D.R. (2017) The microscopic origin of the extreme glass-forming ability of albite and B2O3 Scientific Reports, 7, 43022.10.1038/srep43022Suche in Google Scholar PubMed PubMed Central

Zhang, M., Redhammer, G., Salje, E., and Mookherjee, M. (2002) LiFeSi2O6 and NaFeSi2O6 at low temperatures: An infrared spectroscopic study. Physics and Chemistry of Minerals, 29, 609–616.10.1007/s00269-002-0273-3Suche in Google Scholar

Received: 2019-09-13
Accepted: 2020-02-14
Published Online: 2020-09-20
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. MSA Centennial Review Paper
  2. How American Mineralogist and the Mineralogical Society of America influenced a career in mineralogy, petrology, and plate pushing, and thoughts on mineralogy’s future role
  3. Petrographic and spectral study of hydrothermal mineralization in drill core from Hawaii: A potential analog to alteration in the martian subsurface
  4. Characterizing low-temperature aqueous alteration of Mars-analog basalts from Mauna Kea at multiple scales
  5. Archean to Paleoproterozoic seawater halogen ratios recorded by fluid inclusions in chert and hydrothermal quartz
  6. Metasomatism-controlled hydrogen distribution in the Spitsbergen upper mantle
  7. Phase transformation of hydrous ringwoodite to the lower-mantle phases and the formation of dense hydrous silica
  8. Density and sound velocity of liquid Fe-S alloys at Earth’s outer core P-T conditions
  9. Some geometrical properties of fission-track-surface intersections in apatite
  10. Thermal equation of state of post-aragonite CaCO3-Pmmn
  11. Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics
  12. Raman spectroscopic studies of O–H stretching vibration in Mn-rich apatites: A structural approach
  13. Characterization of modified mineral waste material adsorbent as affected by thermal treatment for optimizing its adsorption of lead and methyl orange
  14. Morin-type transition in 5C pyrrhotite
  15. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform
  16. A multi-methodological study of kernite, a mineral commodity of boron
  17. Letter
  18. Si-rich Mg-sursassite Mg4Al5Si7O23(OH)5 with octahedrally coordinated Si: A new ultrahigh-pressure hydrous phase
  19. Inherited Eocene magmatic tourmaline captured by the Miocene Himalayan leucogranites
  20. Memorial of F. Donald Bloss 1920–2020
  21. Book Review
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7285/html
Button zum nach oben scrollen