Startseite Morin-type transition in 5C pyrrhotite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Morin-type transition in 5C pyrrhotite

  • Charles R.S. Haines ORCID logo , Giulio I. Lampronti , Wim T. Klooster , Simon J. Coles , Sian E. Dutton und Michael A. Carpenter
Veröffentlicht/Copyright: 20. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We report the discovery of a low-temperature spin-flop transition in 5C pyrrhotite at ~155 K that is similar to those seen in hematite at 260 K and FeS (troilite) at 440 K. The 5C crystal was produced by annealing a 4C pyrrhotite crystal at 875 K to produce a change in the vacancy-ordering scheme that developed during cooling. The 5C structure is confirmed by single-crystal X‑ray diffraction and the stoichiometry and homogeneity by electron microprobe and SEM BSE mapping. Resonant ultrasound spectroscopy (RUS), heat capacity, and magnetization measurements from room temperature down to 2 K are reported. The transition is marked by a steep change in elastic properties at the transition temperature, a peak in the heat capacity, and weak anomalies in measurements of magnetization. Magnetic hysteresis loops and comparison with the magnetic properties of 4C pyrrhotite suggest that the transition involves a change in orientation of moments between two different antiferromagnetic structures, perpendicular to the crystallographic c-axis at high temperatures and parallel to the crystallographic c-axis at low temperatures. The proposed structures are consistent with a group theoretical treatment that also predicts a first-order transition between the magnetic structures.

  1. Funding

    The authors acknowledge funding from the Leverhulme Foundation, grant number RPG2016-298. Heat capacity and DC magnetic measurements were carried out using the Advanced Materials Characterization Suite, funded by EPSRC Strategic Equipment Grant EP/M000524/1. RUS facilities in Cambridge were funded by grants to MAC from the Natural Environment Research Council of Great Britain (grant nos. NE/B505738/1 and NE/F17081/1) and from the Engineering and Physical Sciences Research Council (grant no. EP/I036079/1).

References cited

Andresen, A.F., Hofman-Bang, N., Bak, T.A., Varde, E., and Westin, G. (1960) Magnetic phase transitions in stoichiometric FeS studied by means of neutron diffraction. Acta Chemica Scandinavica, 14, 919–926.10.3891/acta.chem.scand.14-0919Suche in Google Scholar

Andresen, A.F., Torbo, P., Ostlund, E., Bloom, G., and Hagen, G. (1967) Phase transitions in FexS (x = 0.90–1.00) studied by neutron diffraction. Acta Chemica Scandinavica, 21, 2841–2848.10.3891/acta.chem.scand.21-2841Suche in Google Scholar

Bertaut, E.F. (1953) Contribution à l’étude des structures lacunaires: la pyrrhotine. Acta Crystallographica, 6, 557–561.10.1107/S0365110X53001502Suche in Google Scholar

Besnus, M.J., and Meyer, A.J.P. (1964) Nouvelles donnees experimentales sur lemagnetisme de la pyrrhotine naturelle. Proceedings of the International Conference on Magnetism, Nottingham, September 1964, 507–511.Suche in Google Scholar

Charilaou, M., Kind, J., Koulialias, D., Weidler, P.G., Mensing, C., Löffler, J.F., and Gehring, A.U. (2015) Magneto-electronic coupling in modulated defect-structures of natural Fe1–xS. Journal of Applied Physics, 118, 83903.10.1063/1.4929634Suche in Google Scholar

de Villiers, J.P.R., and Liles, D.C. (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist, 95, 148–152.10.2138/am.2010.3266Suche in Google Scholar

de Villiers, J.P.R., Liles, D.C., and Becker, M. (2009) The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution. American Mineralogist, 94, 1405.10.2138/am.2009.3081Suche in Google Scholar

Elliot, A.D. (2010) Structure of pyrrhotite 5C (Fe9S10 Acta Crystallographica, B66, 271–279.10.1107/S0108768110011845Suche in Google Scholar PubMed

Fleet, M.E. (1971) The crystal structure of a pyrrhotite (Fe7S8 Acta Crystallographica, B27, 1864–1867.10.1107/S0567740871004990Suche in Google Scholar

Haines, C.R.S., Howard, C.J., Harrison, R.J., and Carpenter, M.A. (2019) Group-theoretical analysis of structural instability, vacancy ordering and magnetic transitions in the system troilite (FeS)–pyrrhotite (Fe1-xS). Acta Crystallographica, B75, 1208–1224.Suche in Google Scholar

Haines, C.R.S, Lampronti, G.I., and Carpenter, M.A. (2020a) Magnetoelastic coupling associated with vacancy ordering and ferrimagnetism in natural pyrrhottie, Fe7S8 Journal of Physics: Condensed Matter, 32, 385401.10.1088/1361-648X/ab9053Suche in Google Scholar PubMed

Haines, C.R.S., Dutton, S.E., Volk, M.W.R., and Carpenter, M.A. (2020b) Order parameter coupling and microstructure dynamics at the Besnus transition in 4C pyrrhotite, Fe7S8 Journal of Physics: Condensed Matter, 32, 405401.10.1088/1361-648X/ab8fd3Suche in Google Scholar PubMed

Hirahara, E., and Murakami, M. (1958) Magnetic and electrical anisotropies of iron sulfide single crystals. Journal of Physics and Chemistry of Solids, 7, 281–289.10.1016/0022-3697(58)90278-6Suche in Google Scholar

Horwood, J.L., Townsend, M.G., and Webster, A.H. (1976) Magnetic susceptibility of single-crystal Fe1–xS. Journal of Solid State Chemistry, 17, 35–42.10.1016/0022-4596(76)90198-5Suche in Google Scholar

Hunt, C.P., Moskowitz, B.M., and Banerjee, S.K. (1995) Magnetic Properties of Rocks and Minerals. In T.J. Ahrens, Ed., Handbook of Physical Constants, vol. 3, pp. 189–204. American Geophysical Union.10.1029/RF003p0189Suche in Google Scholar

Izaola, Z., González, S., Elcoro, L., Perez-Mato, J.M., Madariaga, G., and García, A. (2007) Revision of pyrrhotite structures within a common superspace model. Acta Crystallographica, B63, 693–702.10.1107/S0108768107037275Suche in Google Scholar PubMed

Keller-Besrest, F., Collin, G., and Comes, R. (1983) Structure and planar faults in the defective NiAs-type compound 3C Fe7S8 Acta Crystallographica, B39, 296–303.10.1107/S0108768183002438Suche in Google Scholar

Kontny, A., de Wall, H., Sharp, T.G., and Pósfai, M. (2000) Mineralogy and magnetic behavior of pyrrhotite from a 260 °C section at the KTB drilling site, Germany. American Mineralogist, 85, 1416.10.2138/am-2000-1010Suche in Google Scholar

Koto, K., Morimoto, N., and Gyobu, A. (1975) The superstructure of the intermediate pyrrhotite. I. Partially disordered distribution of metal vacancy in the 6 C type, Fe11S12 Acta Crystallographica, B31, 2759–2764.Suche in Google Scholar

Liles, D.C., and De Villiers, J.P.R. (2012) Redetermination of the structure of 5C pyrrhotite at low temperature and at room temperature. American Mineralogist, 97, 257–261.10.2138/am.2012.3887Suche in Google Scholar

Martín-Hernández, F., Dekkers, M.J., Bominaar-Silkens, I.M.A., and Maan, J.C. (2008) Magnetic anisotropy behaviour of pyrrhotite as determined by low- and high-field experiments. Geophysical Journal International, 174, 42–54.10.1111/j.1365-246X.2008.03793.xSuche in Google Scholar

McKnight, R.E.A., Carpenter, M.A., Darling, T.W., Buckley, A., and Taylor, P.A. (2007) Acoustic dissipation associated with phase transitions in lawsonite, CaAl2Si2O7 (OH)2·H2O. American Mineralogist, 92, 1665–1672.10.2138/am.2007.2568Suche in Google Scholar

Morimoto, N., Gyobu, A., Tsukama, K., and Koto, K. (1975) Superstructure and non-stoichiometry of intermediate pyrrhotite. American Mineralogist, 60, 240–248.Suche in Google Scholar

Nakano, A., Tokonami, M., and Morimoto, N. (1979) Refinement of 3C pyrrhotite, Fe7S8 Acta Crystallographica, B35, 722–724.10.1107/S0567740879004532Suche in Google Scholar

Nakazawa, H., and Morimoto, N. (1971) Phase relations and superstructures of pyrrhotite, Fe1–xS. Materials Research Bulletin, 6, 345–358.10.1016/0025-5408(71)90168-1Suche in Google Scholar

Pósfai, M., Sharp, T.G., and Kontny, A. (2000) Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project. American Mineralogist, 85, 1406.10.2138/am-2000-1009Suche in Google Scholar

Powell, A. V., Vaqueiro, P., Knight, K.S., Chapon, L.C., and Sanchez, R.D. (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8 A powder neutron-diffraction study. Physical Review B, 70.Suche in Google Scholar

Rigaku Oxford Diffraction (2018) CrysAlisPro Software System.Suche in Google Scholar

Rochette, P., Gattacceca, J., Chevrier, V., Hoffmann, V., Lorand, J.-P., Funaki, M., and Hochleitner, R. (2005) Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteoritics and Planetary Science, 40, 529–540.10.1111/j.1945-5100.2005.tb00961.xSuche in Google Scholar

Schwarz, E.J., and Vaughan, D.J. (1972) Magnetic phase relations of pyrrhotite. Journal of Geomagnetism and Geoelectricity, 24, 441–458.10.5636/jgg.24.441Suche in Google Scholar

Sheldrick, G.M. (1997) SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement. University of Gottingen, Germany.Suche in Google Scholar

Sparks, J.T., Mead, W., Kirschbaum, A.J., and Marshall, W. (1960) Neutron diffraction investigation of the Fe1–δS system. Journal of Applied Physics, 31, S356–S357.10.1063/1.1984746Suche in Google Scholar

Sparks, J.T., Mead, W., and Komoto, T. (1962) Neutron diffraction investigation of the magnetic and structural properties of near-stoichiometric iron sulfide. Journal of the Physical Society of Japan, 17(Suppl.), 249–252.Suche in Google Scholar

Yamamoto, A., and Nakazawa, H. (1982) Modulated structure of the NC-type N = 5.5) pyrrhotite, Fe1-xS. Acta Crystallographica Section A, 38, 79–86.10.1107/S0567739482000151Suche in Google Scholar

Received: 2019-08-20
Accepted: 2020-02-26
Published Online: 2020-09-20
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. MSA Centennial Review Paper
  2. How American Mineralogist and the Mineralogical Society of America influenced a career in mineralogy, petrology, and plate pushing, and thoughts on mineralogy’s future role
  3. Petrographic and spectral study of hydrothermal mineralization in drill core from Hawaii: A potential analog to alteration in the martian subsurface
  4. Characterizing low-temperature aqueous alteration of Mars-analog basalts from Mauna Kea at multiple scales
  5. Archean to Paleoproterozoic seawater halogen ratios recorded by fluid inclusions in chert and hydrothermal quartz
  6. Metasomatism-controlled hydrogen distribution in the Spitsbergen upper mantle
  7. Phase transformation of hydrous ringwoodite to the lower-mantle phases and the formation of dense hydrous silica
  8. Density and sound velocity of liquid Fe-S alloys at Earth’s outer core P-T conditions
  9. Some geometrical properties of fission-track-surface intersections in apatite
  10. Thermal equation of state of post-aragonite CaCO3-Pmmn
  11. Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics
  12. Raman spectroscopic studies of O–H stretching vibration in Mn-rich apatites: A structural approach
  13. Characterization of modified mineral waste material adsorbent as affected by thermal treatment for optimizing its adsorption of lead and methyl orange
  14. Morin-type transition in 5C pyrrhotite
  15. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform
  16. A multi-methodological study of kernite, a mineral commodity of boron
  17. Letter
  18. Si-rich Mg-sursassite Mg4Al5Si7O23(OH)5 with octahedrally coordinated Si: A new ultrahigh-pressure hydrous phase
  19. Inherited Eocene magmatic tourmaline captured by the Miocene Himalayan leucogranites
  20. Memorial of F. Donald Bloss 1920–2020
  21. Book Review
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7266/html
Button zum nach oben scrollen