Startseite Structure and elasticity of wadsleyite at high pressures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structure and elasticity of wadsleyite at high pressures

  • B. Kiefer EMAIL logo , L. Stixrude , J. Hafner und G. Kresse
Veröffentlicht/Copyright: 26. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract The athermal equilibrium structure, the equation of state, the elastic constants, and O atom charges were calculated for Mg2SiO4 wadsleyite over a range of pressures using a plane-wave pseudopotential method. The zero-pressure volume is 2% lower and the bulk modulus is 4.5% higher than experimentally observed. After correcting for zero point motion and the 300 K temperature difference between theory and experiment, using a Debye model, the calculated zero pressure volume is within 1% of experiment and the bulk modulus agrees within experimental error. The structure compresses anisotropically with linear moduli for the a, b, and c axes of 610 GPa, 599 GPa, and 454 GPa, respectively. The compression is largely taken up by the Mg octahedra M1, M2, and M3 which are much softer than the Si tetrahedra, with polyhedral bulk moduli of 161 GPa, 159 GPa, 157 GPa, and 331 GPa, respectively. The M1 and M3 octahedra were found to compress anisotropically which explains the greater compressibility of the c axis. The geometry of the Si2O7 group is characterized by a small Si-O-Si angle of 121.2°; compression of this group is largely accommodated by shortening of the Si-O bonds, while the inter-tetrahedral angle is almost pressure independent. We find that our results at ambient pressure are consistent with previously established systematics relating bulk modulus to volume, and Si-O-Si angle to Si-O bond length. However the variation of these quantities upon the application of pressure leads to trends that are distinct from the systematics. The calculated zero pressure elastic constants agree to within 10% with available Brillouin scattering data, with the exception of C12 which is 15% higher than experimentally observed. The calculated isotropically averaged bulk and shear modulus and their pressure derivatives are K0 = 182 GPa, K0' = 4.23, and G0 = 116 GPa, G0' = 1.10, respectively. The aggregate velocities and their pressure derivatives are VP = 9.75 km/s, VP' = 0.056 km/s/GPa, and VS = 5.72 km/s, VS = 0.012 km/s/GPa. We find that the elastic anisotropy of wadsleyite is intermediate between the two other Mg2SiO4 polymorphs, forsterite, and ringwoodite. The anisotropy is only weakly pressure dependent and decreases with increasing pressure. The azimuthal and polarization anisotropy for S waves 14.5% and 12.8% respectively, is almost pressure independent, while the azimuthal anisotropy for P waves decreases from 12.5% at ambient pressure to 10.5% in the upper part of the transition zone (14-17 GPa). Our calculated O atom charges suggest that Ol is the most likely hydroxyl site and remains so throughout the stability field of wadsleyite.

Received: 2000-11-13
Accepted: 2001-7-2
Published Online: 2015-3-26
Published in Print: 2001-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. First-principles modeling of the infrared spectrum of kaolinite
  2. Determination of the limiting fictive temperature of silicate glasses from calorimetric and dilatometric methods: Application to low-temperature liquid volume measurements
  3. Enthalpies of formation of tremolite and talc by high-temperature solution calorimetry – a consistent picture
  4. Evidence for an I2/a to Imab phase transition in the silica polymorph moganite at ~570 K
  5. Thermal decomposition of rhombohedral KClO3 from 29–76 kilobars and implications for the molar volume of fluid oxygen at high pressures
  6. High-pressure behavior of clinochlore
  7. Structure and elasticity of wadsleyite at high pressures
  8. Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar
  9. F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica
  10. Instability of Al2SiO5 “triple-point” assemblages in muscovite+biotite+quartz-bearing metapelites, with implications
  11. Stability of osumilite coexisting with spinel solid solution in metapelitic granulites at high oxygen fugacity
  12. Geikielite exsolution in spinel
  13. Aeromagnetic anomalies, magnetic petrology, and rock magnetism of hemo-ilmenite- and magnetite-rich cumulate rocks from the Sokndal Region, South Rogaland, Norway
  14. Minor element chemistry of hemo-ilmenite and magnetite in cumulate rocks from the Sokndal Region, South Rogaland, Norway
  15. Crystal structure analysis of synthetic Ca4Fe1.5Al17.67O32: A high-pressure, spinel-related phase
  16. Crystal structure of phase X, a high pressure alkali-rich hydrous silicate and its anhydrous equivalent
  17. Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member
  18. Description and crystal structure of turtmannite, a new mineral with a 68 Å period related to mcgovernite
  19. The crystal structure of low melanophlogite
  20. Crystal structures of Na and K aluminate mullites
  21. From mastodon ivory to gemstone: The origin of turquoise color in odontolite
  22. Letters. Elasticity of single-crystal calcite and rhodochrosite by Brillouin spectroscopy
  23. Ikaite, CaCO3·6H2O: Cold comfort for glendonites as paleothermometers
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2001-11-1207/html
Button zum nach oben scrollen