Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
-
Humaira Aslam
, Arshad Ali , Ali Umar , Misbah Ullah Khan, Muhammad Zeshan Azam
, Hayat Ullah
, Khaled Fahmi Fawy , Mahmood D. Aljabri , Shahab Khanund Mohmmed M. Rahman
Abstract
Nanotechnology is promising for water filtration and decontamination, eliminating contaminants and pathogens from wastewater with exceptional efficiency. Nanomaterials like metal oxide nanoparticles (MONPs) have received attention for their extraordinary characteristics and versatility in tackling environmental issues. Metal oxides are attractive wastewater treatment materials due to their various physicochemical features. Metal oxide nanoparticles have great promise, but few review studies have examined their relevance in this field. Thus, our understanding of the extensive range of metal oxide nanoparticles and their water filtration applications is poor. A comprehensive investigation of metal oxide nanoparticles that reduce water contamination is the goal of this review paper. MONPs can remove organic and inorganic chemicals, heavy metals, pesticides, and wastewater dyes like azo-dyes. MONPs’ dynamic physiochemical properties high surface-to-volume ratio and low concentration efficacy make them effective wastewater treatment agents. These features help MONPs absorb and breakdown contaminants, improving water treatment. This extensive review examines five metal oxide nanoparticles, as well as their antibacterial and wastewater treatment uses. Titanium dioxide (TiO2), zinc oxide (ZnO), iron oxide (Fe2O3), copper oxide (CuO), and manganese oxide (MnO2) prove their environmental flexibility and performance. Due to their photocatalytic activity, TiO2 nanoparticles degrade organic contaminants and inactivate germs under UV light. ZnO nanoparticles have the ability to adsorb and photocatalyze heavy metals and organic contaminants from wastewater, making them powerful antimicrobials. Fe2O3 nanoparticles can separate from treated water due to their magnetic characteristics. CuO nanoparticles also adsorb organic dyes and heavy metals, making them useful in wastewater cleanup. Finally, MnO2 nanoparticles have excellent oxidizing characteristics, decomposing organic pollutants and reducing water toxins. Their capacity to catalyze redox reactions makes them essential in water treatment, especially for pollution removal. MONPs, especially in wastewater treatment, have great potential to reduce worldwide water pollution. By using metal oxide nanoparticles, we can improve water purification efficiency and sustainability, preserving our precious water resources and public health.
Acknowledgement
The authors extend their appreciation to Umm Al-Qura University, Saudi Arabia for funding this research work through grant number: 25UQU4290372GSSR04.
-
Research ethics: Not applicable.
-
Informed consent: All the authors are agreed with this publication.
-
Author contributions: The literature survey and collection of data were performed by H.A. and A.U. along with validation. A.A. and M.Z.A. validated, organized the data and improved the schemes. While H.U. and K.F.F. improved the manuscript quality along with language and grammatical improvement. M.D.A. and M.M.R. improved the schemes and checked condition of provided reactions. The manuscript initial draft was prepared by S.K. and M.U.A. presented the data, along with editing, validation, and supervision.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: Not applicable.
-
Research funding: This research work was funded by Umm Al-Qura University, Saudi Arabia under grant number: 25UQU4290372GSSR04.
-
Data availability: Not applicable.
References
1. Busch, M.A. Chiral Pollutants: Distribution, Toxicity and Analysis by Chromatography and Capillary Electrophoresis by Imran Ali (National Institute of Hydrology, Roorkee, India) and Hassan Y. Aboul-Enein (King Faisal Specialist Hospital, Riyadh, Saudi Arabia). John Wiley & Sons: Chichester, UK. xx+ 344 pp. $175.00; ACS Publications, 2004.10.1021/ja040952vSuche in Google Scholar
2. Helmer, R.; Hespanhol, I. Water Pollution Control: A Guide to the Use of Water Quality Management Principles; CRC Press: Great Britain, 1997.Suche in Google Scholar
3. Rai, H.S.; Bhattacharyya, M.S.; Singh, J.; Bansal, T.; Vats, P.; Banerjee, U. Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35 (3), 219–238; https://doi.org/10.1080/10643380590917932.Suche in Google Scholar
4. Jamka, Z.N.; Mohammed, W.T.; Zhenjiang, Y.; Abid, H.R. Enhancing Nitrate Ion Removal from Water Using Fixed Bed Columns with Composite Chitosan-based Beads. Iraqi J. Chem. Petrol Eng. 2023, 24 (4), 75–81; https://doi.org/10.31699/ijcpe.2023.4.7.Suche in Google Scholar
5. Bavasso, I.; Vilardi, G.; Stoller, M.; Chianese, A.; Di Palma, L. Perspectives in Nanotechnology Based Innovative Applications for the Environment. Chem. Eng. Trans. 2016, 47, 55–60.Suche in Google Scholar
6. Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Accounts Chem. Res. 2013, 46 (3), 834–843; https://doi.org/10.1021/ar300029v.Suche in Google Scholar PubMed
7. Kapoor, V.; Phan, D.; Pasha, A.T. Effects of Metal Oxide Nanoparticles on Nitrification in Wastewater Treatment Systems: A Systematic Review. J. Environ. Sci. Health, Part A 2018, 53 (7), 659–668; https://doi.org/10.1080/10934529.2018.1438825.Suche in Google Scholar PubMed
8. Vikram Kapoor, V.K.; Duc Phan, D.P.; Pasha, A. Effects of Metal Oxide Nanoparticles on Nitrification in Wastewater Treatment Systems: A Systematic Review. J. Environ. Sci. Health 2018, 53 (7), 659–668; https://doi.org/10.1080/10934529.2018.1438825.Suche in Google Scholar
9. Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9 (3), 424; https://doi.org/10.3390/nano9030424.Suche in Google Scholar PubMed PubMed Central
10. Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An Overview of Nanomaterials for Water and Wastewater Treatment. Adv. Mater. Sci. Eng. 2016, 2016; https://doi.org/10.1155/2016/4964828.Suche in Google Scholar
11. Singh, S.; Kumar, V.; Romero, R.; Sharma, K.; Singh, J. Applications of Nanoparticles in Wastewater Treatment. Nanobiotechnol. Bioformulations 2019, 395–418; https://doi.org/10.1007/978-3-030-17061-5-17.Suche in Google Scholar
12. Aslam, M.W.; Umar, A.; Khan, M.S.; Wajid, M.; Khan, M.U. Impact of Copper Carbonate Nanoparticles on Hematological, Liver, and Kidney Function, Lipid Profile, and Hormonal Regulation in Albino Mice: A Combined Experimental and Computational Analysis. BioNanoScience 2025, 15 (1), 1–23; https://doi.org/10.1007/s12668-024-01609-4.Suche in Google Scholar
13. Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, 782; https://doi.org/10.1016/j.arabjc.2010.04.008.Suche in Google Scholar
14. Qu, X.; Alvarez, P.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47 (12), 3931–3946; https://doi.org/10.1016/j.watres.2012.09.058.Suche in Google Scholar PubMed
15. Rice, R.G. Applications of Ozone for Industrial Wastewater Treatment – A Review. Ozone Sci. Eng. 1996, 18 (6), 477–515; https://doi.org/10.1080/01919512.1997.10382859.Suche in Google Scholar
16. Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water, Air, Soil Pollut. 2021, 232, 1–28; https://doi.org/10.1007/s11270-021-05154-8.Suche in Google Scholar
17. Henze, M.; Comeau, Y. Wastewater Characterization. Biol. Wastewater Treat.: Princ. Model. Des. 2008, 27.Suche in Google Scholar
18. Dhote, J.; Ingole, S.; Chavhan, A. Review on Wastewater Treatment Technologies. Int. J. Eng. Res. Technol. 2012, 1 (5), 1–10.Suche in Google Scholar
19. Bartram, J.; Ballance, R. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; CRC Press: London, 1996.10.4324/9780203476796Suche in Google Scholar
20. Bitton, G. Wastewater Microbiology; John Wiley & Sons: USA, 2005.10.1002/0471717967Suche in Google Scholar
21. Muga, H.E.; Mihelcic, J.R. Sustainability of Wastewater Treatment Technologies. J. Environ. Manage. 2008, 88 (3), 437–447; https://doi.org/10.1016/j.jenvman.2007.03.008.Suche in Google Scholar PubMed
22. Daus, B.; Wennrich, R.; Weiss, H. Sorption Materials for Arsenic Removal from Water: A Comparative Study. Water Res. 2004, 38 (12), 2948–2954; https://doi.org/10.1016/j.watres.2004.04.003.Suche in Google Scholar PubMed
23. Shon, H.; Vigneswaran, S.; Snyder, S. Effluent Organic Matter (Efom) in Wastewater: Constituents, Effects, and Treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36 (4), 327–374; https://doi.org/10.1080/10643380600580011.Suche in Google Scholar
24. Mazilu, M.; Musat, V.; Innocenzi, P.; Kidchob, T.; Marongiu, D. Liquid-Phase Preparation and Characterization of Zinc Oxide Nanoparticles. Part. Sci. Technol. 2012, 30 (1), 32–42; https://doi.org/10.1080/02726351.2010.544016.Suche in Google Scholar
25. Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in Nanotechnology for Water Treatment. Nanotechnol., Sci. Appl. 2015, 1–17; https://doi.org/10.2147/nsa.s43773.Suche in Google Scholar PubMed PubMed Central
26. Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41 (7), 2740–2779; https://doi.org/10.1039/c1cs15237h.Suche in Google Scholar PubMed PubMed Central
27. Khan, T.; Umar, A.; Subhan, Z.; Khan, M.S.; Ali, H.Z.; Ullah, H.; Sabri, S.; Wajid, M.; Iqbal, R.; Bhat, M.A. Therapeutic Potential of Novel Silver Carbonate Nanostructures in Wound Healing and Antibacterial Activity Against Pseudomonas Chengduensis and Staphylococcus aureus. Pharmaceuticals 2024, 17 (11), 1471; https://doi.org/10.3390/ph17111471.Suche in Google Scholar PubMed PubMed Central
28. Yang, Y.; Zhang, C.; Hu, Z. Impact of Metallic and Metal Oxide Nanoparticles on Wastewater Treatment and Anaerobic Digestion. Environ. Sci.: Process Impacts 2013, 15 (1), 39–48; https://doi.org/10.1039/c2em30655g.Suche in Google Scholar PubMed
29. Yaqoob, A.A.; Ibrahim, M.N.M. A Review Article of Nanoparticles; Synthetic Approaches and Wastewater Treatment Methods. Int. Res. J. Eng. Technol. 2019, 6 (1–7), 2395.Suche in Google Scholar
30. Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J. Synthesis and Applications of Noble Metal Nanoparticles: A Review. Adv. Sci. Eng. Med. 2017, 9 (7), 527–544; https://doi.org/10.1166/asem.2017.2027.Suche in Google Scholar
31. Aslam, H.; Umar, A.; Nusrat, N.; Mansour, M.; Ullah, A.; Honey, S.; Sohail, M.J.; Abbas, M.; Aslam, M.W.; Ullah, M. Nanomaterials in the Treatment of Degenerative Intellectual and Developmental Disabilities. Explor. Biomat-X 1 2024, 1 (6), 353–365; https://doi.org/10.37349/ebmx.2024.00024.Suche in Google Scholar
32. Umar, A.; Khan, M.S.; Wajid, M.; Ullah, H. Biocompatibility, Antimicrobial Efficacy, and Therapeutic Potential of Cobalt Carbonate Nanoparticles in Wound Healing, Sex Hormones, and Metabolic Regulation in Diabetic Albino Mice. Biochem. Biophys. Res. Commun. 2024, 734, 150773; https://doi.org/10.1016/j.bbrc.2024.150773.Suche in Google Scholar PubMed
33. Khan, M.S.; Maqsud, M.S.; Akmal, H.; Umar, A. Toxicity of Silver Nanoparticles in the Aquatic System. In Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, 2022; pp 627–647.10.1016/B978-0-12-824508-8.00016-2Suche in Google Scholar
34. Patel, K.D.; Singh, R.K.; Kim, H.-W. Carbon-Based Nanomaterials as an Emerging Platform for Theranostics. Mater. Horiz. 2019, 6 (3), 434–469; https://doi.org/10.1039/c8mh00966j.Suche in Google Scholar
35. Aslam, H.; Nusrat, N.; Mansour, M.; Umar, A.; Ullah, A.; Honey, S.; Sohail, M.J.; Abbas, M.; Aslam, M.W.; Khan, M.U. Photonic Silver Iodide Nanostructures for Optical Biosensors. Explor. BioMat-X 2024, 1 (6), 366–379; https://doi.org/10.37349/ebmx.2024.00025.Suche in Google Scholar
36. Mallikarjunaiah, S.; Pattabhiramaiah, M.; Metikurki, B. Application of Nanotechnology in the Bioremediation of Heavy Metals and Wastewater Management. Nanotechnol. Food Agric. Environ. 2020, 297–321; https://doi.org/10.1007/978-3-030-31938-0-13.Suche in Google Scholar
37. Bandyopadhyay, A.; Jana, D. A Review on Role of Tetra-Rings in Graphene Systems and their Possible Applications. Rep. Prog. Phys. 2020, 83 (5), 056501; https://doi.org/10.1088/1361-6633/ab85ba.Suche in Google Scholar PubMed
38. Zhu, J.; Li, D.; Chen, H.; Yang, X.; Lu, L.; Wang, X. Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick-precipitation Method. Mater. Lett. 2004, 58 (26), 3324–3327; https://doi.org/10.1016/j.matlet.2004.06.031.Suche in Google Scholar
39. Sheoran, S.; Arora, S.; Samsonraj, R.; Govindaiah, P.; vuree, S. Lipid-Based Nanoparticles for Treatment of Cancer. Heliyon 2022, 8 (5); https://doi.org/10.1016/j.heliyon.2022.e09403.Suche in Google Scholar PubMed PubMed Central
40. Nwanya, A.C.; Razanamahandry, L.C.; Bashir, A.; Ikpo, C.O.; Nwanya, S.C.; Botha, S.; Ntwampe, S.K.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. Industrial Textile Effluent Treatment and Antibacterial Effectiveness of Zea Mays L. Dry Husk Mediated bio-synthesized Copper Oxide Nanoparticles. J. Hazard Mater. 2019, 375, 281–289; https://doi.org/10.1016/j.jhazmat.2019.05.004.Suche in Google Scholar PubMed
41. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab J. Chem. 2019, 12 (7), 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Suche in Google Scholar
42. Xing, R.; Xu, G.; Qu, N.; Zhou, R.; Yang, J.; Kong, J. 3D Printing of Liquid‐Metal‐In‐Ceramic Metamaterials for High‐Efficient Microwave Absorption. Adv. Funct. Mater. 2023, 2307499; https://doi.org/10.1002/adfm.202307499.Suche in Google Scholar
43. Kim, K.-H.; Koo, B.-R.; Ahn, H.-J. Effects of Sb-doped SnO2–WO3 Nanocomposite on Electrochromic Performance. Ceram. Int. 2019, 45 (13), 15990–15995; https://doi.org/10.1016/j.ceramint.2019.05.109.Suche in Google Scholar
44. Zhang, L.; Chen, Z.; Wang, H.; Wu, S.; Zhao, K.; Sun, H.; Kong, D.; Wang, C.; Leng, X.; Zhu, D. Preparation and Evaluation of PCL–PEG–PCL Polymeric Nanoparticles for Doxorubicin Delivery Against Breast Cancer. RSC Adv. 2016, 6 (60), 54727–54737; https://doi.org/10.1039/c6ra04687h.Suche in Google Scholar
45. Jin, M.; Jin, G.; Kang, L.; Chen, L.; Gao, Z.; Huang, W. Smart Polymeric Nanoparticles with pH-responsive and PEG-Detachable Properties for co-delivering Paclitaxel and Survivin Sirna to Enhance Antitumor Outcomes. Int. J. Nanomed. 2018, 2405–2426; https://doi.org/10.2147/ijn.s161426.Suche in Google Scholar PubMed PubMed Central
46. Kim, K.R.; You, S.J.; Kim, H.J.; Yang, D.H.; Chun, H.J.; Lee, D.; Khang, G. Theranostic Potential of Biodegradable Polymeric Nanoparticles with Paclitaxel and Curcumin Against Breast Carcinoma. Biomater. Sci. 2021, 9 (10), 3750–3761; https://doi.org/10.1039/d1bm00370d.Suche in Google Scholar PubMed
47. Jia, Z.; Dai, R.; Zheng, Z.; Qin, Y.; Duan, A.; Peng, X.; Xie, X.; Zhang, R. Hollow Carbon-Based Nanosystem for Photoacoustic Imaging-Guided Hydrogenothermal Therapy in the Second Near-Infrared Window. RSC Adv. 2021, 11 (20), 12022–12029; https://doi.org/10.1039/d1ra00093d.Suche in Google Scholar PubMed PubMed Central
48. Sundqvist, B. Fullerenes Under High Pressures. Adv. Phys. 1999, 48 (1), 1–134; https://doi.org/10.1080/000187399243464.Suche in Google Scholar
49. Gao, X.; Zhao, Y.; Yuan, H.; Chen, Z.; Chai, Z. Theoretical Study of a Hybrid Type Dumbbell-like Fullerene Dimer C60CC70. Chem. Phys. Lett. 2006, 418 (1–3), 24–29; https://doi.org/10.1016/j.cplett.2005.10.092.Suche in Google Scholar
50. Song, R.; Wang, Q.; Mao, B.; Wang, Z.; Tang, D.; Zhang, B.; Zhang, J.; Liu, C.; He, D.; Wu, Z.; Mu, S. Flexible Graphite Films with High Conductivity for Radio-frequency Antennas. Carbon 2018, 130, 164–169; https://doi.org/10.1016/j.carbon.2018.01.019.Suche in Google Scholar
51. Cao, M.; Han, C.; Wang, X.; Zhang, M.; Zhang, Y.; Shu, J.; Yang, H.; Fang, X.; Yuan, J. Graphene Nanohybrids: Excellent Electromagnetic Properties for the Absorbing and Shielding of Electromagnetic Waves. J. Mater. Chem. C 2018, 6 (17), 4586–4602; https://doi.org/10.1039/c7tc05869a.Suche in Google Scholar
52. Tiwari, A.; Shukla, S.K. Advanced Carbon Materials and Technology; John Wiley & Sons: USA, 2014.10.1002/9781118895399Suche in Google Scholar
53. Cheremisinoff, P.N. Handbook of Water and Wastewater Treatment Technology; Routledge: New York, 2019.10.1201/9780203752494Suche in Google Scholar
54. Jain, D. Modification and Application of Carbon Nanotubes; Zugl.: Clausthal, Techn. Univ., Diss.: Clausthal, 2007.Suche in Google Scholar
55. Raja, M.; Subha, J. Carbon Nanotubes and their Applications. Adv. Carbon Mater. Technol. 2014, 173–191; https://doi.org/10.1002/9781118895399.ch5.Suche in Google Scholar
56. Shalu, S.; Dasgupta, K.; Kumari, A.; Ghosh, B.D. Carbon Nanotubes: A Concise Review of the Synthesis Techniques, Properties, and Applications. Carbon Nanotub. Nanoparticles 2019, 81–106; https://doi.org/10.1201/9780429463877-5.Suche in Google Scholar
57. Mangiagli, P.M. Development of Laminated Carbon Nanofiber Reinforced Polyurethane Composites. Master Thesis, Engineering Science and Mechanics, 2013. https://etda.libraries.psu.edu/catalog/19029.Suche in Google Scholar
58. Kaith, B.; Kalia, S; Mohanty, S.; Nayak, S.K. Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials 2015. https://doi.org/10.1002/9781119179108.ch14.Suche in Google Scholar
59. Khan, S.; Rahman, F.U.; Ullah, I.; Khan, S.; Gul, Z.; Sadiq, F.; Ahmad, T.; Hussain, S.M.S.; Ali, I.; Israr, M. Water Desalination, and Energy Consumption Applications of 2D Nano Materials: Hexagonal Boron Nitride, Graphenes, and Quantum Dots. Rev. Inorg. Chem 2024, 44 (4), 619–636.10.1515/revic-2024-0013Suche in Google Scholar
60. Ismail, K.; Ghodgaonkar, D.K.; Awang, Z.; Samsuri, A.; Said, C.M.S.; Esa, M. Microwave Detection of Rubber Filler Using Rectangular Dielectric Waveguide. In 2005 Asia-Pacific Conference on Applied Electromagnetics; IEEE, 2005.Suche in Google Scholar
61. Nazir, S.; Zhang, J.-M.; Junaid, M.; Saleem, S.; Ali, A.; Ullah, A.; Khan, S. Metal-based Nanoparticles: Basics, Types, Fabrications and Their Electronic Applications. Z. Phys. Chem. 2024, 238 (6), 965–995.10.1515/zpch-2023-0375Suche in Google Scholar
62. Shaffique, S.; Kang, S.-M.; Ashraf, M.A.; Umar, A.; Khan, M.S.; Wajid, M.; Al-Ghamdi, A.A.; Lee, I.-J. Research Progress on Migratory Water Birds: Indicators of Heavy Metal Pollution in Inland Wetland Resources of Punjab, Pakistan. Water 2024, 16 (8), 1163; https://doi.org/10.3390/w16081163.Suche in Google Scholar
63. Aslam, H.; Umar, A.; Khan, M.U.; Honey, S.; Ullah, A.; Ashraf, M.A.; Ayesha, G.; Nusrat, N.; Jamil, M.; Khan, S.; Adeel, A. A Review on Heavy Metals in Ecosystems, their Sources, Roles, and Impact on Plant Life. J. Genetic Med. Gene Therapy 2024, 7 (1), 020–034; https://doi.org/10.29328/journal.jgmgt.1001012.Suche in Google Scholar
64. Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Biosynthesis of Metal and Metal Oxide Nanoparticles. Chem. Bio Eng. Rev. 2016, 3 (2), 55–67; https://doi.org/10.1002/cben.201500018.Suche in Google Scholar
65. Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of Metal and Metal Oxide Nanoparticles@ MOFs. Coord. Chem. Rev. 2016, 307, 237–254; https://doi.org/10.1016/j.ccr.2015.08.002.Suche in Google Scholar
66. Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J.C. Stability of Commercial Metal Oxide Nanoparticles in Water. Water Res. 2008, 42 (8–9), 2204–2212; https://doi.org/10.1016/j.watres.2007.11.036.Suche in Google Scholar PubMed
67. Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper Oxide Nanoparticles are Highly Toxic: A Comparison Between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21 (9), 1726–1732; https://doi.org/10.1021/tx800064j.Suche in Google Scholar PubMed
68. Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng.: C 2014, 44, 278–284; https://doi.org/10.1016/j.msec.2014.08.031.Suche in Google Scholar PubMed
69. Fouda, A.; Saad, E.; Salem, S.S.; Shaheen, T.I. In-Vitro Cytotoxicity, Antibacterial, and UV Protection Properties of the Biosynthesized Zinc Oxide Nanoparticles for Medical Textile Applications. Microb. Pathog.. 2018, 125, 252–261; https://doi.org/10.1016/j.micpath.2018.09.030.Suche in Google Scholar PubMed
70. Konsolakis, M.; Lykaki, M. Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-based Transition Metal Catalysts: A Critical Review. Catalysts 2021, 11 (4), 452; https://doi.org/10.3390/catal11040452.Suche in Google Scholar
71. Ortiz de Zárate, D.; García-Meca, C.; Pinilla-Cienfuegos, E.; Ayúcar, J.A.; Griol, A.; Bellières, L.; Hontañón, E.; Kruis, F.E.; Martí, J. Green and Sustainable Manufacture of Ultrapure Engineered Nanomaterials. Nanomaterials 2020, 10 (3), 466; https://doi.org/10.3390/nano10030466.Suche in Google Scholar PubMed PubMed Central
72. Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13 (3), 223–245; https://doi.org/10.1080/17518253.2020.1802517.Suche in Google Scholar
73. Martínez‐Alcalá, I.; Bernal, M.P. Environmental Impact of Metals, Metalloids, and their Toxicity. Metalloids Plants: Adv. Future Prospects 2020, 451–488; https://doi.org/10.1002/9781119487210.ch21.Suche in Google Scholar
74. Teske, S.S.; Detweiler, C.S. The Biomechanisms of Metal and Metal-oxide Nanoparticles’ Interactions with Cells. J. Int. Environ. Res. Public Health 2015, 12 (2), 1112–1134; https://doi.org/10.3390/ijerph120201112.Suche in Google Scholar PubMed PubMed Central
75. Huang, Y.-W.; Wu, C.-H.; Aronstam, R.S. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in Vitro Studies. Materials 2010, 3 (10), 4842–4859; https://doi.org/10.3390/ma3104842.Suche in Google Scholar PubMed PubMed Central
76. Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A. Polymer-Supported Metals and Metal Oxide Nanoparticles: Synthesis, Characterization, and Applications. J. Nanopart. Res. 2012, 14, 1–24; https://doi.org/10.1007/s11051-011-0715-2.Suche in Google Scholar
77. Frantellizzi, V.; Conte, M.; Pontico, M.; Pani, A.; Pani, R.; De Vincentis, G. New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nucl. Med. Mol. Imag. 2020, 54, 65–80; https://doi.org/10.1007/s13139-020-00635-w.Suche in Google Scholar PubMed PubMed Central
78. Naseem, T.; Durrani, T. The Role of Some Important Metal Oxide Nanoparticles for Wastewater and Antibacterial Applications: A Review. Environ. Chem. Ecotoxicol. 2021, 3, 59–75; https://doi.org/10.1016/j.enceco.2020.12.001.Suche in Google Scholar
79. Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of Nanoparticles as Adsorbents for Waste Water Treatment: An Emerging Trend. Sustain. Mater. Tech. 2019, 22, e00128; https://doi.org/10.1016/j.susmat.2019.e00128.Suche in Google Scholar
80. Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review. J. Hazard. Mater. 2012, 211, 317–331; https://doi.org/10.1016/j.jhazmat.2011.10.016.Suche in Google Scholar PubMed
81. Sagir, M.; Tahir, M.B.; Akram, J.; Tahir, M.S.; Waheed, U. Nanoparticles and Significance of Photocatalytic Nanoparticles in Wastewater Treatment: A Review. Curr. Anal. Chem. 2021, 17 (1), 38–48; https://doi.org/10.2174/15734110mta3lmtykx.Suche in Google Scholar
82. Dimapilis, E.A.S.; Hsu, C.-S.; Mendoza, R.M.O.; Lu, M.-C. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 2018, 28 (2), 47–56; https://doi.org/10.1016/j.serj.2017.10.001.Suche in Google Scholar
83. Vergara-Llanos, D.; Koning, T.; Pavicic, M.F.; Bello-Toledo, H.; Diaz-Gomez, A.; Jaramillo, A.; Melendrez-Castro, M.; Ehrenfeld, P.; Sanchez-Sanhueza, G. Antibacterial and Cytotoxic Evaluation of Copper and Zinc Oxide Nanoparticles as a Potential Disinfectant Material of Connections in Implant Provisional Abutments: An in-vitro Study. Arch. Oral Biol. 2021, 122, 105031; https://doi.org/10.1016/j.archoralbio.2020.105031.Suche in Google Scholar PubMed
84. Krainoi, A.; Poomputsa, K.; Kalkornsurapranee, E.; Johns, J.; Songtipya, L.; Nip, R.; Nakaramontri, Y. Disinfectant Natural Rubber Films Filled with Modified Zinc Oxide Nanoparticles: Synergetic Effect of Mechanical and Antibacterial Properties. Express Polymer Lett. 2021, 15 (11); https://doi.org/10.3144/expresspolymlett.2021.87.Suche in Google Scholar
85. Masoumbaigi, H.; Rezaee, A.; Hosseini, H.; Hashemi, S. Water Disinfection by Zinc Oxide Nanoparticle Prepared with Solution Combustion Method. Desalination Water Treat. 2015, 56 (9), 2376–2381; https://doi.org/10.1080/19443994.2014.961556.Suche in Google Scholar
86. Jin, S.-E.; Jin, J.E.; Hwang, W.; Hong, S.W. Photocatalytic Antibacterial Application of Zinc Oxide Nanoparticles and Self-assembled Networks Under Dual UV Irradiation for Enhanced Disinfection. J. Int. Nanomed. 2019, 1737–1751; https://doi.org/10.2147/ijn.s192277.Suche in Google Scholar PubMed PubMed Central
87. Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol. Lett. 2008, 279 (1), 71–76; https://doi.org/10.1111/j.1574-6968.2007.01012.x.Suche in Google Scholar PubMed
88. Bottero, J.-Y.; Auffan, M.; Rose, J.; Mouneyrac, C.; Botta, C.; Labille, J.; Masion, A.; Thill, A.; Chaneac, C. Manufactured Metal and Metal-oxide Nanoparticles: Properties and Perturbing Mechanisms of their Biological Activity in Ecosystems. Comptes Rendus Geosci. 2011, 343 (2–3), 168–176; https://doi.org/10.1016/j.crte.2011.01.001.Suche in Google Scholar
89. Tso, C.-P.; Zhung, C.-M.; Shih, Y.-H.; Tseng, Y.-M.; Wu, S.-C.; Doong, R.-A. Stability of Metal Oxide Nanoparticles in Aqueous Solutions. Water Sci. Tech. 2010, 61 (1), 127–133; https://doi.org/10.2166/wst.2010.787.Suche in Google Scholar PubMed
90. Motshekga, S.C.; Ray, S.S.; Maity, A. Synthesis and Characterization of Alginate Beads Encapsulated Zinc Oxide Nanoparticles for Bacteria Disinfection in Water. J. Colloid Interface Sci. 2018, 512, 686–692; https://doi.org/10.1016/j.jcis.2017.10.098.Suche in Google Scholar PubMed
91. Versiani, M.A.; Abi Rached-Junior, F.J.; Kishen, A.; Pécora, J.D.; Silva-Sousa, Y.T.; de Sousa-Neto, M.D. Zinc Oxide Nanoparticles Enhance Physicochemical Characteristics of Grossman Sealer. J. Endod. 2016, 42 (12), 1804–1810; https://doi.org/10.1016/j.joen.2016.08.023.Suche in Google Scholar PubMed
92. Mohamed, M.; Ela, F.E.; Mahmoud, R.; Farghali, A.; Othman, S.; Allam, A.; Aziz, S.A. Assessment of Biocidal Efficacy of Zinc Oxide-Zeolite Nanocompoites as a Novel Water Disinfectant Against Commercial Disinfectants Used in Water Purification. Appl. Water Sci. 2023, 14 (11), 233–239; https://doi.org/10.1007/s13201-024-02266-4.Suche in Google Scholar
93. Borgohain, K.; Mahamuni, S. Formation of Single-phase CuO Quantum Particles. J. Mater. Res. 2002, 17 (5), 1220–1223; https://doi.org/10.1557/jmr.2002.0180.Suche in Google Scholar
94. Chang, Y.; Zeng, H.C. Controlled Synthesis and Self-assembly of Single-crystalline CuO Nanorods and Nanoribbons. Cryst. Growth Des. 2004, 4 (2), 397–402; https://doi.org/10.1021/cg034127m.Suche in Google Scholar
95. Singh, J.; Kaur, G.; Rawat, M. A Brief Review on Synthesis and Characterization of Copper Oxide Nanoparticles and its Applications. J. Bioelectron. Nanotechnol. 2016, 1 (9).10.13188/2475-224X.1000003Suche in Google Scholar
96. Ren, G.; Hu, D.; Cheng, E.W.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. J Int. Antimicrobial Agents 2009, 33 (6), 587–590; https://doi.org/10.1016/j.ijantimicag.2008.12.004.Suche in Google Scholar PubMed
97. Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A. Copper Oxide Nanoparticles: Synthesis, Characterization and their Antibacterial Activity. J. Cluster Sci. 2011, 22, 121–129; https://doi.org/10.1007/s10876-011-0349-7.Suche in Google Scholar
98. Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S. Characterization of Copper Oxide Nanoparticles Fabricated by the sol–gel Method. J. Electron. Mater. 2015, 44, 3704–3709; https://doi.org/10.1007/s11664-015-3867-5.Suche in Google Scholar
99. Padil, V.V.T.; Černík, M. Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and their Antibacterial Application. J. Int. Nanomed. 2013, 889–898; https://doi.org/10.2147/ijn.s40599.Suche in Google Scholar
100. Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of Antioxidant and Anticancer Activity of Copper Oxide Nanoparticles Synthesized Using Medicinally Important Plant Extracts. Biomed. Pharmacother. 2017, 89, 1067–1077; https://doi.org/10.1016/j.biopha.2017.02.101.Suche in Google Scholar PubMed
101. Lanje, A.S.; Sharma, S.J.; Pode, R.B.; Ningthoujam, R.S. Synthesis and Optical Characterization of Copper Oxide Nanoparticles. Adv. Appl. Sci. Res. 2010, 1 (2), 36–40.Suche in Google Scholar
102. Sagadevan, S.; Vennila, S.; Marlinda, A.R.; Al-Douri, Y.; Rafie Johan, M.; Anita Lett, J. Synthesis and Evaluation of the Structural, Optical, and Antibacterial Properties of Copper Oxide Nanoparticles. Appl. Phys. A 2019, 125, 1–9; https://doi.org/10.1007/s00339-019-2785-4.Suche in Google Scholar
103. Hosseinpour-Mashkani, S.M.; Ramezani, M. Silver and Silver Oxide Nanoparticles: Synthesis and Characterization by Thermal Decomposition. Mater. Lett. 2014, 130, 259–262; https://doi.org/10.1016/j.matlet.2014.05.133.Suche in Google Scholar
104. Rashmi, B.; Harlapur, S.F.; Avinash, B.; Ravikumar, C.; Nagaswarupa, H.; Kumar, M.A.; Gurushantha, K.; Santosh, M. Facile Green Synthesis of Silver Oxide Nanoparticles and their Electrochemical, Photocatalytic and Biological Studies. Inorg. Chem. Commun. 2020, 111, 107580; https://doi.org/10.1016/j.inoche.2019.107580.Suche in Google Scholar
105. Siddiqui, M.R.H.; Adil, S.; Assal, M.; Ali, R.; Al-Warthan, A. Synthesis and Characterization of Silver Oxide and Silver Chloride Nanoparticles with High Thermal Stability. Asian J. Chem. 2013, 25 (6), 3405–3409; https://doi.org/10.14233/ajchem.2013.13874.Suche in Google Scholar
106. Manikandan, V.; Velmurugan, P.; Park, J.-H.; Chang, W.-S.; Park, Y.-J.; Jayanthi, P.; Cho, M.; Oh, B.-T. Green Synthesis of Silver Oxide Nanoparticles and its Antibacterial Activity Against Dental Pathogens. 3 Biotech 2017, 7, 1–9; https://doi.org/10.1007/s13205-017-0670-4.Suche in Google Scholar PubMed PubMed Central
107. Sharma, S.N.; Srivastava, R. Silver Oxide Nanoparticles Synthesized by Green Method from Artocarpus Hetrophyllus for Antibacterial and Antimicrobial Applications. Mater. Today: Proc. 2020, 28, 332–336. https://doi.org/10.1016/j.matpr.2020.02.233.Suche in Google Scholar
108. Nadeem, M.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Hashmi, S.S.; Ahmad, W.; Zahir, A. The Current Trends in the Green Syntheses of Titanium Oxide Nanoparticles and their Applications. Green Chem. Lett. Rev. 2018, 11 (4), 492–502; https://doi.org/10.1080/17518253.2018.1538430.Suche in Google Scholar
109. Hamed, M.T.; Bakr, B.A.; Shahin, Y.H.; Elwakil, B.H.; Abu-Serie, M.M.; Aljohani, F.S.; Bekhit, A.A. Novel Synthesis of Titanium Oxide Nanoparticles: Biological Activity and Acute Toxicity Study. Bioinorg. Chem. Appl. 2021, 2021; https://doi.org/10.1155/2021/8171786.Suche in Google Scholar PubMed PubMed Central
110. Kiwi, J.; Rtimi, S.; Sanjines, R.; Pulgarin, C. TiO2 and TiO2 -Doped Films Able to Kill Bacteria by Contact: New Evidence for the Dynamics of Bacterial Inactivation in the Dark and under Light Irradiation. Int. J. Photoenergy 2014, 2014, 1–17; https://doi.org/10.1155/2014/785037.Suche in Google Scholar
111. Stanić, V.; Tanasković, S.B. Antibacterial Activity of Metal Oxide Nanoparticles. In Nanotoxicity; Elsevier, 2020; pp. 241–274.10.1016/B978-0-12-819943-5.00011-7Suche in Google Scholar
112. Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic Pollutants in Water and Wastewater Treatment. Rev. Environ. Health 2017, 32 (1–2), 111–117; https://doi.org/10.1515/reveh-2016-0063.Suche in Google Scholar PubMed PubMed Central
113. Jabbar, K.Q.; Barzinjy, A.A.; Hamad, S.M. Iron Oxide Nanoparticles: Preparation Methods, Functions, Adsorption and Coagulation/Flocculation in Wastewater Treatment. Environ. Nanotechnol., Monit. Manag. 2022, 17, 100661; https://doi.org/10.1016/j.enmm.2022.100661.Suche in Google Scholar
114. Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; Liu, Z. F. Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review. Sci. Total Environ. 2012, 424, 1–10; https://doi.org/10.1016/j.scitotenv.2012.02.023.Suche in Google Scholar PubMed
115. Khan, M.U.; Ullah, H.; Honey, S.; Talib, Z.; Abbas, M.; Umar, A.; Ahmad, T.; Sohail, J.; Sohail, A.; Makgopa, K.; Asim, J. Metal Nanoparticles: Synthesis Approach, Types and Applications–a Mini Review. Nano-Horizons: J. Nanosci. Nanotechnol. 2023, 2, 21; https://doi.org/10.25159/nanohorizons.87a973477e35.Suche in Google Scholar
116. Umar, A.; Khan, M.S.; Wajid, M.; Khan, M.U. Dose-Dependent Effects of Cobalt Nanoparticles on Antioxidant Systems, Hematological Parameters, and Organ Morphology in Albino Mice. BioNanoScience 2024, 14 (3), 3078–3098; https://doi.org/10.1007/s12668-024-01598-4.Suche in Google Scholar
117. Kamali, M.; Persson, K.M.; Costa, M.E.; Capela, I. Sustainability Criteria for Assessing Nanotechnology Applicability in Industrial Wastewater Treatment: Current Status and Future Outlook. Environ. Int. 2019, 125, 261–276; https://doi.org/10.1016/j.envint.2019.01.055.Suche in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers