Home Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
Article
Licensed
Unlicensed Requires Authentication

Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation

  • Humaira Aslam , Arshad Ali , Ali Umar , Misbah Ullah Khan ORCID logo EMAIL logo , Muhammad Zeshan Azam ORCID logo , Hayat Ullah , Khaled Fahmi Fawy , Mahmood D. Aljabri , Shahab Khan ORCID logo EMAIL logo and Mohmmed M. Rahman ORCID logo
Published/Copyright: August 5, 2025

Abstract

Nanotechnology is promising for water filtration and decontamination, eliminating contaminants and pathogens from wastewater with exceptional efficiency. Nanomaterials like metal oxide nanoparticles (MONPs) have received attention for their extraordinary characteristics and versatility in tackling environmental issues. Metal oxides are attractive wastewater treatment materials due to their various physicochemical features. Metal oxide nanoparticles have great promise, but few review studies have examined their relevance in this field. Thus, our understanding of the extensive range of metal oxide nanoparticles and their water filtration applications is poor. A comprehensive investigation of metal oxide nanoparticles that reduce water contamination is the goal of this review paper. MONPs can remove organic and inorganic chemicals, heavy metals, pesticides, and wastewater dyes like azo-dyes. MONPs’ dynamic physiochemical properties high surface-to-volume ratio and low concentration efficacy make them effective wastewater treatment agents. These features help MONPs absorb and breakdown contaminants, improving water treatment. This extensive review examines five metal oxide nanoparticles, as well as their antibacterial and wastewater treatment uses. Titanium dioxide (TiO2), zinc oxide (ZnO), iron oxide (Fe2O3), copper oxide (CuO), and manganese oxide (MnO2) prove their environmental flexibility and performance. Due to their photocatalytic activity, TiO2 nanoparticles degrade organic contaminants and inactivate germs under UV light. ZnO nanoparticles have the ability to adsorb and photocatalyze heavy metals and organic contaminants from wastewater, making them powerful antimicrobials. Fe2O3 nanoparticles can separate from treated water due to their magnetic characteristics. CuO nanoparticles also adsorb organic dyes and heavy metals, making them useful in wastewater cleanup. Finally, MnO2 nanoparticles have excellent oxidizing characteristics, decomposing organic pollutants and reducing water toxins. Their capacity to catalyze redox reactions makes them essential in water treatment, especially for pollution removal. MONPs, especially in wastewater treatment, have great potential to reduce worldwide water pollution. By using metal oxide nanoparticles, we can improve water purification efficiency and sustainability, preserving our precious water resources and public health.


Corresponding authors: Misbah Ullah Khan Centre for Nanosciences, University of Okara, Okara 56130, Pakistan, E-mail: ; and Shahab Khan, Department of Chemistry, University of Malakand, Dir Lower, Malakand, Pakistan, E-mail:

Acknowledgement

The authors extend their appreciation to Umm Al-Qura University, Saudi Arabia for funding this research work through grant number: 25UQU4290372GSSR04.

  1. Research ethics: Not applicable.

  2. Informed consent: All the authors are agreed with this publication.

  3. Author contributions: The literature survey and collection of data were performed by H.A. and A.U. along with validation. A.A. and M.Z.A. validated, organized the data and improved the schemes. While H.U. and K.F.F. improved the manuscript quality along with language and grammatical improvement. M.D.A. and M.M.R. improved the schemes and checked condition of provided reactions. The manuscript initial draft was prepared by S.K. and M.U.A. presented the data, along with editing, validation, and supervision.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: Not applicable.

  6. Research funding: This research work was funded by Umm Al-Qura University, Saudi Arabia under grant number: 25UQU4290372GSSR04.

  7. Data availability: Not applicable.

References

1. Busch, M.A. Chiral Pollutants: Distribution, Toxicity and Analysis by Chromatography and Capillary Electrophoresis by Imran Ali (National Institute of Hydrology, Roorkee, India) and Hassan Y. Aboul-Enein (King Faisal Specialist Hospital, Riyadh, Saudi Arabia). John Wiley & Sons: Chichester, UK. xx+ 344 pp. $175.00; ACS Publications, 2004.10.1021/ja040952vSearch in Google Scholar

2. Helmer, R.; Hespanhol, I. Water Pollution Control: A Guide to the Use of Water Quality Management Principles; CRC Press: Great Britain, 1997.Search in Google Scholar

3. Rai, H.S.; Bhattacharyya, M.S.; Singh, J.; Bansal, T.; Vats, P.; Banerjee, U. Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35 (3), 219–238; https://doi.org/10.1080/10643380590917932.Search in Google Scholar

4. Jamka, Z.N.; Mohammed, W.T.; Zhenjiang, Y.; Abid, H.R. Enhancing Nitrate Ion Removal from Water Using Fixed Bed Columns with Composite Chitosan-based Beads. Iraqi J. Chem. Petrol Eng. 2023, 24 (4), 75–81; https://doi.org/10.31699/ijcpe.2023.4.7.Search in Google Scholar

5. Bavasso, I.; Vilardi, G.; Stoller, M.; Chianese, A.; Di Palma, L. Perspectives in Nanotechnology Based Innovative Applications for the Environment. Chem. Eng. Trans. 2016, 47, 55–60.Search in Google Scholar

6. Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Accounts Chem. Res. 2013, 46 (3), 834–843; https://doi.org/10.1021/ar300029v.Search in Google Scholar PubMed

7. Kapoor, V.; Phan, D.; Pasha, A.T. Effects of Metal Oxide Nanoparticles on Nitrification in Wastewater Treatment Systems: A Systematic Review. J. Environ. Sci. Health, Part A 2018, 53 (7), 659–668; https://doi.org/10.1080/10934529.2018.1438825.Search in Google Scholar PubMed

8. Vikram Kapoor, V.K.; Duc Phan, D.P.; Pasha, A. Effects of Metal Oxide Nanoparticles on Nitrification in Wastewater Treatment Systems: A Systematic Review. J. Environ. Sci. Health 2018, 53 (7), 659–668; https://doi.org/10.1080/10934529.2018.1438825.Search in Google Scholar

9. Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9 (3), 424; https://doi.org/10.3390/nano9030424.Search in Google Scholar PubMed PubMed Central

10. Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An Overview of Nanomaterials for Water and Wastewater Treatment. Adv. Mater. Sci. Eng. 2016, 2016; https://doi.org/10.1155/2016/4964828.Search in Google Scholar

11. Singh, S.; Kumar, V.; Romero, R.; Sharma, K.; Singh, J. Applications of Nanoparticles in Wastewater Treatment. Nanobiotechnol. Bioformulations 2019, 395–418; https://doi.org/10.1007/978-3-030-17061-5-17.Search in Google Scholar

12. Aslam, M.W.; Umar, A.; Khan, M.S.; Wajid, M.; Khan, M.U. Impact of Copper Carbonate Nanoparticles on Hematological, Liver, and Kidney Function, Lipid Profile, and Hormonal Regulation in Albino Mice: A Combined Experimental and Computational Analysis. BioNanoScience 2025, 15 (1), 1–23; https://doi.org/10.1007/s12668-024-01609-4.Search in Google Scholar

13. Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, 782; https://doi.org/10.1016/j.arabjc.2010.04.008.Search in Google Scholar

14. Qu, X.; Alvarez, P.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47 (12), 3931–3946; https://doi.org/10.1016/j.watres.2012.09.058.Search in Google Scholar PubMed

15. Rice, R.G. Applications of Ozone for Industrial Wastewater Treatment – A Review. Ozone Sci. Eng. 1996, 18 (6), 477–515; https://doi.org/10.1080/01919512.1997.10382859.Search in Google Scholar

16. Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water, Air, Soil Pollut. 2021, 232, 1–28; https://doi.org/10.1007/s11270-021-05154-8.Search in Google Scholar

17. Henze, M.; Comeau, Y. Wastewater Characterization. Biol. Wastewater Treat.: Princ. Model. Des. 2008, 27.Search in Google Scholar

18. Dhote, J.; Ingole, S.; Chavhan, A. Review on Wastewater Treatment Technologies. Int. J. Eng. Res. Technol. 2012, 1 (5), 1–10.Search in Google Scholar

19. Bartram, J.; Ballance, R. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; CRC Press: London, 1996.10.4324/9780203476796Search in Google Scholar

20. Bitton, G. Wastewater Microbiology; John Wiley & Sons: USA, 2005.10.1002/0471717967Search in Google Scholar

21. Muga, H.E.; Mihelcic, J.R. Sustainability of Wastewater Treatment Technologies. J. Environ. Manage. 2008, 88 (3), 437–447; https://doi.org/10.1016/j.jenvman.2007.03.008.Search in Google Scholar PubMed

22. Daus, B.; Wennrich, R.; Weiss, H. Sorption Materials for Arsenic Removal from Water: A Comparative Study. Water Res. 2004, 38 (12), 2948–2954; https://doi.org/10.1016/j.watres.2004.04.003.Search in Google Scholar PubMed

23. Shon, H.; Vigneswaran, S.; Snyder, S. Effluent Organic Matter (Efom) in Wastewater: Constituents, Effects, and Treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36 (4), 327–374; https://doi.org/10.1080/10643380600580011.Search in Google Scholar

24. Mazilu, M.; Musat, V.; Innocenzi, P.; Kidchob, T.; Marongiu, D. Liquid-Phase Preparation and Characterization of Zinc Oxide Nanoparticles. Part. Sci. Technol. 2012, 30 (1), 32–42; https://doi.org/10.1080/02726351.2010.544016.Search in Google Scholar

25. Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in Nanotechnology for Water Treatment. Nanotechnol., Sci. Appl. 2015, 1–17; https://doi.org/10.2147/nsa.s43773.Search in Google Scholar PubMed PubMed Central

26. Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41 (7), 2740–2779; https://doi.org/10.1039/c1cs15237h.Search in Google Scholar PubMed PubMed Central

27. Khan, T.; Umar, A.; Subhan, Z.; Khan, M.S.; Ali, H.Z.; Ullah, H.; Sabri, S.; Wajid, M.; Iqbal, R.; Bhat, M.A. Therapeutic Potential of Novel Silver Carbonate Nanostructures in Wound Healing and Antibacterial Activity Against Pseudomonas Chengduensis and Staphylococcus aureus. Pharmaceuticals 2024, 17 (11), 1471; https://doi.org/10.3390/ph17111471.Search in Google Scholar PubMed PubMed Central

28. Yang, Y.; Zhang, C.; Hu, Z. Impact of Metallic and Metal Oxide Nanoparticles on Wastewater Treatment and Anaerobic Digestion. Environ. Sci.: Process Impacts 2013, 15 (1), 39–48; https://doi.org/10.1039/c2em30655g.Search in Google Scholar PubMed

29. Yaqoob, A.A.; Ibrahim, M.N.M. A Review Article of Nanoparticles; Synthetic Approaches and Wastewater Treatment Methods. Int. Res. J. Eng. Technol. 2019, 6 (1–7), 2395.Search in Google Scholar

30. Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J. Synthesis and Applications of Noble Metal Nanoparticles: A Review. Adv. Sci. Eng. Med. 2017, 9 (7), 527–544; https://doi.org/10.1166/asem.2017.2027.Search in Google Scholar

31. Aslam, H.; Umar, A.; Nusrat, N.; Mansour, M.; Ullah, A.; Honey, S.; Sohail, M.J.; Abbas, M.; Aslam, M.W.; Ullah, M. Nanomaterials in the Treatment of Degenerative Intellectual and Developmental Disabilities. Explor. Biomat-X 1 2024, 1 (6), 353–365; https://doi.org/10.37349/ebmx.2024.00024.Search in Google Scholar

32. Umar, A.; Khan, M.S.; Wajid, M.; Ullah, H. Biocompatibility, Antimicrobial Efficacy, and Therapeutic Potential of Cobalt Carbonate Nanoparticles in Wound Healing, Sex Hormones, and Metabolic Regulation in Diabetic Albino Mice. Biochem. Biophys. Res. Commun. 2024, 734, 150773; https://doi.org/10.1016/j.bbrc.2024.150773.Search in Google Scholar PubMed

33. Khan, M.S.; Maqsud, M.S.; Akmal, H.; Umar, A. Toxicity of Silver Nanoparticles in the Aquatic System. In Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, 2022; pp 627–647.10.1016/B978-0-12-824508-8.00016-2Search in Google Scholar

34. Patel, K.D.; Singh, R.K.; Kim, H.-W. Carbon-Based Nanomaterials as an Emerging Platform for Theranostics. Mater. Horiz. 2019, 6 (3), 434–469; https://doi.org/10.1039/c8mh00966j.Search in Google Scholar

35. Aslam, H.; Nusrat, N.; Mansour, M.; Umar, A.; Ullah, A.; Honey, S.; Sohail, M.J.; Abbas, M.; Aslam, M.W.; Khan, M.U. Photonic Silver Iodide Nanostructures for Optical Biosensors. Explor. BioMat-X 2024, 1 (6), 366–379; https://doi.org/10.37349/ebmx.2024.00025.Search in Google Scholar

36. Mallikarjunaiah, S.; Pattabhiramaiah, M.; Metikurki, B. Application of Nanotechnology in the Bioremediation of Heavy Metals and Wastewater Management. Nanotechnol. Food Agric. Environ. 2020, 297–321; https://doi.org/10.1007/978-3-030-31938-0-13.Search in Google Scholar

37. Bandyopadhyay, A.; Jana, D. A Review on Role of Tetra-Rings in Graphene Systems and their Possible Applications. Rep. Prog. Phys. 2020, 83 (5), 056501; https://doi.org/10.1088/1361-6633/ab85ba.Search in Google Scholar PubMed

38. Zhu, J.; Li, D.; Chen, H.; Yang, X.; Lu, L.; Wang, X. Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick-precipitation Method. Mater. Lett. 2004, 58 (26), 3324–3327; https://doi.org/10.1016/j.matlet.2004.06.031.Search in Google Scholar

39. Sheoran, S.; Arora, S.; Samsonraj, R.; Govindaiah, P.; vuree, S. Lipid-Based Nanoparticles for Treatment of Cancer. Heliyon 2022, 8 (5); https://doi.org/10.1016/j.heliyon.2022.e09403.Search in Google Scholar PubMed PubMed Central

40. Nwanya, A.C.; Razanamahandry, L.C.; Bashir, A.; Ikpo, C.O.; Nwanya, S.C.; Botha, S.; Ntwampe, S.K.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. Industrial Textile Effluent Treatment and Antibacterial Effectiveness of Zea Mays L. Dry Husk Mediated bio-synthesized Copper Oxide Nanoparticles. J. Hazard Mater. 2019, 375, 281–289; https://doi.org/10.1016/j.jhazmat.2019.05.004.Search in Google Scholar PubMed

41. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab J. Chem. 2019, 12 (7), 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Search in Google Scholar

42. Xing, R.; Xu, G.; Qu, N.; Zhou, R.; Yang, J.; Kong, J. 3D Printing of Liquid‐Metal‐In‐Ceramic Metamaterials for High‐Efficient Microwave Absorption. Adv. Funct. Mater. 2023, 2307499; https://doi.org/10.1002/adfm.202307499.Search in Google Scholar

43. Kim, K.-H.; Koo, B.-R.; Ahn, H.-J. Effects of Sb-doped SnO2–WO3 Nanocomposite on Electrochromic Performance. Ceram. Int. 2019, 45 (13), 15990–15995; https://doi.org/10.1016/j.ceramint.2019.05.109.Search in Google Scholar

44. Zhang, L.; Chen, Z.; Wang, H.; Wu, S.; Zhao, K.; Sun, H.; Kong, D.; Wang, C.; Leng, X.; Zhu, D. Preparation and Evaluation of PCL–PEG–PCL Polymeric Nanoparticles for Doxorubicin Delivery Against Breast Cancer. RSC Adv. 2016, 6 (60), 54727–54737; https://doi.org/10.1039/c6ra04687h.Search in Google Scholar

45. Jin, M.; Jin, G.; Kang, L.; Chen, L.; Gao, Z.; Huang, W. Smart Polymeric Nanoparticles with pH-responsive and PEG-Detachable Properties for co-delivering Paclitaxel and Survivin Sirna to Enhance Antitumor Outcomes. Int. J. Nanomed. 2018, 2405–2426; https://doi.org/10.2147/ijn.s161426.Search in Google Scholar PubMed PubMed Central

46. Kim, K.R.; You, S.J.; Kim, H.J.; Yang, D.H.; Chun, H.J.; Lee, D.; Khang, G. Theranostic Potential of Biodegradable Polymeric Nanoparticles with Paclitaxel and Curcumin Against Breast Carcinoma. Biomater. Sci. 2021, 9 (10), 3750–3761; https://doi.org/10.1039/d1bm00370d.Search in Google Scholar PubMed

47. Jia, Z.; Dai, R.; Zheng, Z.; Qin, Y.; Duan, A.; Peng, X.; Xie, X.; Zhang, R. Hollow Carbon-Based Nanosystem for Photoacoustic Imaging-Guided Hydrogenothermal Therapy in the Second Near-Infrared Window. RSC Adv. 2021, 11 (20), 12022–12029; https://doi.org/10.1039/d1ra00093d.Search in Google Scholar PubMed PubMed Central

48. Sundqvist, B. Fullerenes Under High Pressures. Adv. Phys. 1999, 48 (1), 1–134; https://doi.org/10.1080/000187399243464.Search in Google Scholar

49. Gao, X.; Zhao, Y.; Yuan, H.; Chen, Z.; Chai, Z. Theoretical Study of a Hybrid Type Dumbbell-like Fullerene Dimer C60CC70. Chem. Phys. Lett. 2006, 418 (1–3), 24–29; https://doi.org/10.1016/j.cplett.2005.10.092.Search in Google Scholar

50. Song, R.; Wang, Q.; Mao, B.; Wang, Z.; Tang, D.; Zhang, B.; Zhang, J.; Liu, C.; He, D.; Wu, Z.; Mu, S. Flexible Graphite Films with High Conductivity for Radio-frequency Antennas. Carbon 2018, 130, 164–169; https://doi.org/10.1016/j.carbon.2018.01.019.Search in Google Scholar

51. Cao, M.; Han, C.; Wang, X.; Zhang, M.; Zhang, Y.; Shu, J.; Yang, H.; Fang, X.; Yuan, J. Graphene Nanohybrids: Excellent Electromagnetic Properties for the Absorbing and Shielding of Electromagnetic Waves. J. Mater. Chem. C 2018, 6 (17), 4586–4602; https://doi.org/10.1039/c7tc05869a.Search in Google Scholar

52. Tiwari, A.; Shukla, S.K. Advanced Carbon Materials and Technology; John Wiley & Sons: USA, 2014.10.1002/9781118895399Search in Google Scholar

53. Cheremisinoff, P.N. Handbook of Water and Wastewater Treatment Technology; Routledge: New York, 2019.10.1201/9780203752494Search in Google Scholar

54. Jain, D. Modification and Application of Carbon Nanotubes; Zugl.: Clausthal, Techn. Univ., Diss.: Clausthal, 2007.Search in Google Scholar

55. Raja, M.; Subha, J. Carbon Nanotubes and their Applications. Adv. Carbon Mater. Technol. 2014, 173–191; https://doi.org/10.1002/9781118895399.ch5.Search in Google Scholar

56. Shalu, S.; Dasgupta, K.; Kumari, A.; Ghosh, B.D. Carbon Nanotubes: A Concise Review of the Synthesis Techniques, Properties, and Applications. Carbon Nanotub. Nanoparticles 2019, 81–106; https://doi.org/10.1201/9780429463877-5.Search in Google Scholar

57. Mangiagli, P.M. Development of Laminated Carbon Nanofiber Reinforced Polyurethane Composites. Master Thesis, Engineering Science and Mechanics, 2013. https://etda.libraries.psu.edu/catalog/19029.Search in Google Scholar

58. Kaith, B.; Kalia, S; Mohanty, S.; Nayak, S.K. Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials 2015. https://doi.org/10.1002/9781119179108.ch14.Search in Google Scholar

59. Khan, S.; Rahman, F.U.; Ullah, I.; Khan, S.; Gul, Z.; Sadiq, F.; Ahmad, T.; Hussain, S.M.S.; Ali, I.; Israr, M. Water Desalination, and Energy Consumption Applications of 2D Nano Materials: Hexagonal Boron Nitride, Graphenes, and Quantum Dots. Rev. Inorg. Chem 2024, 44 (4), 619–636.10.1515/revic-2024-0013Search in Google Scholar

60. Ismail, K.; Ghodgaonkar, D.K.; Awang, Z.; Samsuri, A.; Said, C.M.S.; Esa, M. Microwave Detection of Rubber Filler Using Rectangular Dielectric Waveguide. In 2005 Asia-Pacific Conference on Applied Electromagnetics; IEEE, 2005.Search in Google Scholar

61. Nazir, S.; Zhang, J.-M.; Junaid, M.; Saleem, S.; Ali, A.; Ullah, A.; Khan, S. Metal-based Nanoparticles: Basics, Types, Fabrications and Their Electronic Applications. Z. Phys. Chem. 2024, 238 (6), 965–995.10.1515/zpch-2023-0375Search in Google Scholar

62. Shaffique, S.; Kang, S.-M.; Ashraf, M.A.; Umar, A.; Khan, M.S.; Wajid, M.; Al-Ghamdi, A.A.; Lee, I.-J. Research Progress on Migratory Water Birds: Indicators of Heavy Metal Pollution in Inland Wetland Resources of Punjab, Pakistan. Water 2024, 16 (8), 1163; https://doi.org/10.3390/w16081163.Search in Google Scholar

63. Aslam, H.; Umar, A.; Khan, M.U.; Honey, S.; Ullah, A.; Ashraf, M.A.; Ayesha, G.; Nusrat, N.; Jamil, M.; Khan, S.; Adeel, A. A Review on Heavy Metals in Ecosystems, their Sources, Roles, and Impact on Plant Life. J. Genetic Med. Gene Therapy 2024, 7 (1), 020–034; https://doi.org/10.29328/journal.jgmgt.1001012.Search in Google Scholar

64. Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Biosynthesis of Metal and Metal Oxide Nanoparticles. Chem. Bio Eng. Rev. 2016, 3 (2), 55–67; https://doi.org/10.1002/cben.201500018.Search in Google Scholar

65. Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of Metal and Metal Oxide Nanoparticles@ MOFs. Coord. Chem. Rev. 2016, 307, 237–254; https://doi.org/10.1016/j.ccr.2015.08.002.Search in Google Scholar

66. Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J.C. Stability of Commercial Metal Oxide Nanoparticles in Water. Water Res. 2008, 42 (8–9), 2204–2212; https://doi.org/10.1016/j.watres.2007.11.036.Search in Google Scholar PubMed

67. Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper Oxide Nanoparticles are Highly Toxic: A Comparison Between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21 (9), 1726–1732; https://doi.org/10.1021/tx800064j.Search in Google Scholar PubMed

68. Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng.: C 2014, 44, 278–284; https://doi.org/10.1016/j.msec.2014.08.031.Search in Google Scholar PubMed

69. Fouda, A.; Saad, E.; Salem, S.S.; Shaheen, T.I. In-Vitro Cytotoxicity, Antibacterial, and UV Protection Properties of the Biosynthesized Zinc Oxide Nanoparticles for Medical Textile Applications. Microb. Pathog.. 2018, 125, 252–261; https://doi.org/10.1016/j.micpath.2018.09.030.Search in Google Scholar PubMed

70. Konsolakis, M.; Lykaki, M. Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-based Transition Metal Catalysts: A Critical Review. Catalysts 2021, 11 (4), 452; https://doi.org/10.3390/catal11040452.Search in Google Scholar

71. Ortiz de Zárate, D.; García-Meca, C.; Pinilla-Cienfuegos, E.; Ayúcar, J.A.; Griol, A.; Bellières, L.; Hontañón, E.; Kruis, F.E.; Martí, J. Green and Sustainable Manufacture of Ultrapure Engineered Nanomaterials. Nanomaterials 2020, 10 (3), 466; https://doi.org/10.3390/nano10030466.Search in Google Scholar PubMed PubMed Central

72. Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13 (3), 223–245; https://doi.org/10.1080/17518253.2020.1802517.Search in Google Scholar

73. Martínez‐Alcalá, I.; Bernal, M.P. Environmental Impact of Metals, Metalloids, and their Toxicity. Metalloids Plants: Adv. Future Prospects 2020, 451–488; https://doi.org/10.1002/9781119487210.ch21.Search in Google Scholar

74. Teske, S.S.; Detweiler, C.S. The Biomechanisms of Metal and Metal-oxide Nanoparticles’ Interactions with Cells. J. Int. Environ. Res. Public Health 2015, 12 (2), 1112–1134; https://doi.org/10.3390/ijerph120201112.Search in Google Scholar PubMed PubMed Central

75. Huang, Y.-W.; Wu, C.-H.; Aronstam, R.S. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in Vitro Studies. Materials 2010, 3 (10), 4842–4859; https://doi.org/10.3390/ma3104842.Search in Google Scholar PubMed PubMed Central

76. Sarkar, S.; Guibal, E.; Quignard, F.; SenGupta, A. Polymer-Supported Metals and Metal Oxide Nanoparticles: Synthesis, Characterization, and Applications. J. Nanopart. Res. 2012, 14, 1–24; https://doi.org/10.1007/s11051-011-0715-2.Search in Google Scholar

77. Frantellizzi, V.; Conte, M.; Pontico, M.; Pani, A.; Pani, R.; De Vincentis, G. New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nucl. Med. Mol. Imag. 2020, 54, 65–80; https://doi.org/10.1007/s13139-020-00635-w.Search in Google Scholar PubMed PubMed Central

78. Naseem, T.; Durrani, T. The Role of Some Important Metal Oxide Nanoparticles for Wastewater and Antibacterial Applications: A Review. Environ. Chem. Ecotoxicol. 2021, 3, 59–75; https://doi.org/10.1016/j.enceco.2020.12.001.Search in Google Scholar

79. Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of Nanoparticles as Adsorbents for Waste Water Treatment: An Emerging Trend. Sustain. Mater. Tech. 2019, 22, e00128; https://doi.org/10.1016/j.susmat.2019.e00128.Search in Google Scholar

80. Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review. J. Hazard. Mater. 2012, 211, 317–331; https://doi.org/10.1016/j.jhazmat.2011.10.016.Search in Google Scholar PubMed

81. Sagir, M.; Tahir, M.B.; Akram, J.; Tahir, M.S.; Waheed, U. Nanoparticles and Significance of Photocatalytic Nanoparticles in Wastewater Treatment: A Review. Curr. Anal. Chem. 2021, 17 (1), 38–48; https://doi.org/10.2174/15734110mta3lmtykx.Search in Google Scholar

82. Dimapilis, E.A.S.; Hsu, C.-S.; Mendoza, R.M.O.; Lu, M.-C. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 2018, 28 (2), 47–56; https://doi.org/10.1016/j.serj.2017.10.001.Search in Google Scholar

83. Vergara-Llanos, D.; Koning, T.; Pavicic, M.F.; Bello-Toledo, H.; Diaz-Gomez, A.; Jaramillo, A.; Melendrez-Castro, M.; Ehrenfeld, P.; Sanchez-Sanhueza, G. Antibacterial and Cytotoxic Evaluation of Copper and Zinc Oxide Nanoparticles as a Potential Disinfectant Material of Connections in Implant Provisional Abutments: An in-vitro Study. Arch. Oral Biol. 2021, 122, 105031; https://doi.org/10.1016/j.archoralbio.2020.105031.Search in Google Scholar PubMed

84. Krainoi, A.; Poomputsa, K.; Kalkornsurapranee, E.; Johns, J.; Songtipya, L.; Nip, R.; Nakaramontri, Y. Disinfectant Natural Rubber Films Filled with Modified Zinc Oxide Nanoparticles: Synergetic Effect of Mechanical and Antibacterial Properties. Express Polymer Lett. 2021, 15 (11); https://doi.org/10.3144/expresspolymlett.2021.87.Search in Google Scholar

85. Masoumbaigi, H.; Rezaee, A.; Hosseini, H.; Hashemi, S. Water Disinfection by Zinc Oxide Nanoparticle Prepared with Solution Combustion Method. Desalination Water Treat. 2015, 56 (9), 2376–2381; https://doi.org/10.1080/19443994.2014.961556.Search in Google Scholar

86. Jin, S.-E.; Jin, J.E.; Hwang, W.; Hong, S.W. Photocatalytic Antibacterial Application of Zinc Oxide Nanoparticles and Self-assembled Networks Under Dual UV Irradiation for Enhanced Disinfection. J. Int. Nanomed. 2019, 1737–1751; https://doi.org/10.2147/ijn.s192277.Search in Google Scholar PubMed PubMed Central

87. Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol. Lett. 2008, 279 (1), 71–76; https://doi.org/10.1111/j.1574-6968.2007.01012.x.Search in Google Scholar PubMed

88. Bottero, J.-Y.; Auffan, M.; Rose, J.; Mouneyrac, C.; Botta, C.; Labille, J.; Masion, A.; Thill, A.; Chaneac, C. Manufactured Metal and Metal-oxide Nanoparticles: Properties and Perturbing Mechanisms of their Biological Activity in Ecosystems. Comptes Rendus Geosci. 2011, 343 (2–3), 168–176; https://doi.org/10.1016/j.crte.2011.01.001.Search in Google Scholar

89. Tso, C.-P.; Zhung, C.-M.; Shih, Y.-H.; Tseng, Y.-M.; Wu, S.-C.; Doong, R.-A. Stability of Metal Oxide Nanoparticles in Aqueous Solutions. Water Sci. Tech. 2010, 61 (1), 127–133; https://doi.org/10.2166/wst.2010.787.Search in Google Scholar PubMed

90. Motshekga, S.C.; Ray, S.S.; Maity, A. Synthesis and Characterization of Alginate Beads Encapsulated Zinc Oxide Nanoparticles for Bacteria Disinfection in Water. J. Colloid Interface Sci. 2018, 512, 686–692; https://doi.org/10.1016/j.jcis.2017.10.098.Search in Google Scholar PubMed

91. Versiani, M.A.; Abi Rached-Junior, F.J.; Kishen, A.; Pécora, J.D.; Silva-Sousa, Y.T.; de Sousa-Neto, M.D. Zinc Oxide Nanoparticles Enhance Physicochemical Characteristics of Grossman Sealer. J. Endod. 2016, 42 (12), 1804–1810; https://doi.org/10.1016/j.joen.2016.08.023.Search in Google Scholar PubMed

92. Mohamed, M.; Ela, F.E.; Mahmoud, R.; Farghali, A.; Othman, S.; Allam, A.; Aziz, S.A. Assessment of Biocidal Efficacy of Zinc Oxide-Zeolite Nanocompoites as a Novel Water Disinfectant Against Commercial Disinfectants Used in Water Purification. Appl. Water Sci. 2023, 14 (11), 233–239; https://doi.org/10.1007/s13201-024-02266-4.Search in Google Scholar

93. Borgohain, K.; Mahamuni, S. Formation of Single-phase CuO Quantum Particles. J. Mater. Res. 2002, 17 (5), 1220–1223; https://doi.org/10.1557/jmr.2002.0180.Search in Google Scholar

94. Chang, Y.; Zeng, H.C. Controlled Synthesis and Self-assembly of Single-crystalline CuO Nanorods and Nanoribbons. Cryst. Growth Des. 2004, 4 (2), 397–402; https://doi.org/10.1021/cg034127m.Search in Google Scholar

95. Singh, J.; Kaur, G.; Rawat, M. A Brief Review on Synthesis and Characterization of Copper Oxide Nanoparticles and its Applications. J. Bioelectron. Nanotechnol. 2016, 1 (9).10.13188/2475-224X.1000003Search in Google Scholar

96. Ren, G.; Hu, D.; Cheng, E.W.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. J Int. Antimicrobial Agents 2009, 33 (6), 587–590; https://doi.org/10.1016/j.ijantimicag.2008.12.004.Search in Google Scholar PubMed

97. Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A. Copper Oxide Nanoparticles: Synthesis, Characterization and their Antibacterial Activity. J. Cluster Sci. 2011, 22, 121–129; https://doi.org/10.1007/s10876-011-0349-7.Search in Google Scholar

98. Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S. Characterization of Copper Oxide Nanoparticles Fabricated by the sol–gel Method. J. Electron. Mater. 2015, 44, 3704–3709; https://doi.org/10.1007/s11664-015-3867-5.Search in Google Scholar

99. Padil, V.V.T.; Černík, M. Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and their Antibacterial Application. J. Int. Nanomed. 2013, 889–898; https://doi.org/10.2147/ijn.s40599.Search in Google Scholar

100. Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of Antioxidant and Anticancer Activity of Copper Oxide Nanoparticles Synthesized Using Medicinally Important Plant Extracts. Biomed. Pharmacother. 2017, 89, 1067–1077; https://doi.org/10.1016/j.biopha.2017.02.101.Search in Google Scholar PubMed

101. Lanje, A.S.; Sharma, S.J.; Pode, R.B.; Ningthoujam, R.S. Synthesis and Optical Characterization of Copper Oxide Nanoparticles. Adv. Appl. Sci. Res. 2010, 1 (2), 36–40.Search in Google Scholar

102. Sagadevan, S.; Vennila, S.; Marlinda, A.R.; Al-Douri, Y.; Rafie Johan, M.; Anita Lett, J. Synthesis and Evaluation of the Structural, Optical, and Antibacterial Properties of Copper Oxide Nanoparticles. Appl. Phys. A 2019, 125, 1–9; https://doi.org/10.1007/s00339-019-2785-4.Search in Google Scholar

103. Hosseinpour-Mashkani, S.M.; Ramezani, M. Silver and Silver Oxide Nanoparticles: Synthesis and Characterization by Thermal Decomposition. Mater. Lett. 2014, 130, 259–262; https://doi.org/10.1016/j.matlet.2014.05.133.Search in Google Scholar

104. Rashmi, B.; Harlapur, S.F.; Avinash, B.; Ravikumar, C.; Nagaswarupa, H.; Kumar, M.A.; Gurushantha, K.; Santosh, M. Facile Green Synthesis of Silver Oxide Nanoparticles and their Electrochemical, Photocatalytic and Biological Studies. Inorg. Chem. Commun. 2020, 111, 107580; https://doi.org/10.1016/j.inoche.2019.107580.Search in Google Scholar

105. Siddiqui, M.R.H.; Adil, S.; Assal, M.; Ali, R.; Al-Warthan, A. Synthesis and Characterization of Silver Oxide and Silver Chloride Nanoparticles with High Thermal Stability. Asian J. Chem. 2013, 25 (6), 3405–3409; https://doi.org/10.14233/ajchem.2013.13874.Search in Google Scholar

106. Manikandan, V.; Velmurugan, P.; Park, J.-H.; Chang, W.-S.; Park, Y.-J.; Jayanthi, P.; Cho, M.; Oh, B.-T. Green Synthesis of Silver Oxide Nanoparticles and its Antibacterial Activity Against Dental Pathogens. 3 Biotech 2017, 7, 1–9; https://doi.org/10.1007/s13205-017-0670-4.Search in Google Scholar PubMed PubMed Central

107. Sharma, S.N.; Srivastava, R. Silver Oxide Nanoparticles Synthesized by Green Method from Artocarpus Hetrophyllus for Antibacterial and Antimicrobial Applications. Mater. Today: Proc. 2020, 28, 332–336. https://doi.org/10.1016/j.matpr.2020.02.233.Search in Google Scholar

108. Nadeem, M.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Hashmi, S.S.; Ahmad, W.; Zahir, A. The Current Trends in the Green Syntheses of Titanium Oxide Nanoparticles and their Applications. Green Chem. Lett. Rev. 2018, 11 (4), 492–502; https://doi.org/10.1080/17518253.2018.1538430.Search in Google Scholar

109. Hamed, M.T.; Bakr, B.A.; Shahin, Y.H.; Elwakil, B.H.; Abu-Serie, M.M.; Aljohani, F.S.; Bekhit, A.A. Novel Synthesis of Titanium Oxide Nanoparticles: Biological Activity and Acute Toxicity Study. Bioinorg. Chem. Appl. 2021, 2021; https://doi.org/10.1155/2021/8171786.Search in Google Scholar PubMed PubMed Central

110. Kiwi, J.; Rtimi, S.; Sanjines, R.; Pulgarin, C. TiO2 and TiO2 -Doped Films Able to Kill Bacteria by Contact: New Evidence for the Dynamics of Bacterial Inactivation in the Dark and under Light Irradiation. Int. J. Photoenergy 2014, 2014, 1–17; https://doi.org/10.1155/2014/785037.Search in Google Scholar

111. Stanić, V.; Tanasković, S.B. Antibacterial Activity of Metal Oxide Nanoparticles. In Nanotoxicity; Elsevier, 2020; pp. 241–274.10.1016/B978-0-12-819943-5.00011-7Search in Google Scholar

112. Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic Pollutants in Water and Wastewater Treatment. Rev. Environ. Health 2017, 32 (1–2), 111–117; https://doi.org/10.1515/reveh-2016-0063.Search in Google Scholar PubMed PubMed Central

113. Jabbar, K.Q.; Barzinjy, A.A.; Hamad, S.M. Iron Oxide Nanoparticles: Preparation Methods, Functions, Adsorption and Coagulation/Flocculation in Wastewater Treatment. Environ. Nanotechnol., Monit. Manag. 2022, 17, 100661; https://doi.org/10.1016/j.enmm.2022.100661.Search in Google Scholar

114. Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; Liu, Z. F. Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review. Sci. Total Environ. 2012, 424, 1–10; https://doi.org/10.1016/j.scitotenv.2012.02.023.Search in Google Scholar PubMed

115. Khan, M.U.; Ullah, H.; Honey, S.; Talib, Z.; Abbas, M.; Umar, A.; Ahmad, T.; Sohail, J.; Sohail, A.; Makgopa, K.; Asim, J. Metal Nanoparticles: Synthesis Approach, Types and Applications–a Mini Review. Nano-Horizons: J. Nanosci. Nanotechnol. 2023, 2, 21; https://doi.org/10.25159/nanohorizons.87a973477e35.Search in Google Scholar

116. Umar, A.; Khan, M.S.; Wajid, M.; Khan, M.U. Dose-Dependent Effects of Cobalt Nanoparticles on Antioxidant Systems, Hematological Parameters, and Organ Morphology in Albino Mice. BioNanoScience 2024, 14 (3), 3078–3098; https://doi.org/10.1007/s12668-024-01598-4.Search in Google Scholar

117. Kamali, M.; Persson, K.M.; Costa, M.E.; Capela, I. Sustainability Criteria for Assessing Nanotechnology Applicability in Industrial Wastewater Treatment: Current Status and Future Outlook. Environ. Int. 2019, 125, 261–276; https://doi.org/10.1016/j.envint.2019.01.055.Search in Google Scholar PubMed

Received: 2025-07-03
Accepted: 2025-07-09
Published Online: 2025-08-05
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0096/pdf
Scroll to top button