Startseite Naturwissenschaften Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets

  • Joseph Anthony Doss Jerries Infanta , Ashok Kumar Kaliamurthy EMAIL logo , Jeyanthinath Mayandi , Sharmila Saminathan ORCID logo und Sonachalam Arumugam EMAIL logo
Veröffentlicht/Copyright: 18. September 2024

Abstract

In the present study, the structural and electrochemical properties on Ni–CuCo2O4 (0 ≤ x ≤ 10 %) was studied for the use of active electrode materials in asymmetric supercapacitors prepared by a simple hydrothermal process. The synthesized material’s morphology shows that the nanosheets are assembled with an average diameter of about 50 nm, and the X-ray diffraction results show the spinel cubic structure with the space group of Fd-3mz (No. 227). CuCo2O4 electrodes exhibit a high specific capacitance for the electrodes because of the abundant redox reactions of Co2+/Co3+ and Co3+/Co4+, and Ni at the Co site has displayed exceptional charge-discharge and cyclic stability properties. The electrochemical studies show that the Ni doped CuCo2O4 electrode has the highest pseudocapacitive nature, with ultra-specific capacitances of 803 F g−1, 889 F g−1, 924 F g−1, and 1,086 F g−1 at 1 A g−1 respectively for pure, 2, 6, and 10 % Ni doped CuCo2O4 electrodes. Further, the excellent rate capability with 82 % capacitance retention and 92.3 % Coulombic efficiency were realized after 1,000 cycles. Moreover, the M-H study at room temperature showed paramagnetic behaviour. Additionally, the electrochemical and magnetic characteristics of the CuCo2O4 system is expected to improve as the doping quantity of Ni increased. This study may pave the way for enhanced properties of Ni doped CuCo2O4 for futuristic hybrid devices applications.


Corresponding authors: Ashok Kumar Kaliamurthy, Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea, E-mail: ; and Sonachalam Arumugam, Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; and Tamil Nadu Open University, Chennai, 600015, Tamil Nadu, India, E-mail:

Acknowledgments

S. A. wishes to thank UGC-DAE-CSR (Indore), DST (MES and SERB), MHRD-RUSA, TANSCHE (Chennai) and BRNS (Mumbai), Indo-Poland for financial support.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: Not applicable.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. BoopathiRaja, R.; Parthibavarman, M.; Nishara Begum, A. Hydrothermal Induced Novel CuCo2O4 Electrode for High Performance Supercapacitor Applications. Vacuum 2019, 165, 96–104. https://doi.org/10.1016/j.vacuum.2019.04.013.Suche in Google Scholar

2. Jayasubramaniyan, S.; Balasundari, S.; Yeom, S.J.; Naresh, N.; Rani, T.; Rapaka, E.V.; Satyanarayana, N.; Lee, H.-W.; Muralidharan, P. Synthesis of Porous CuCo2O4 Nanorods/reduced Graphene Oxide Composites via a Facile Microwave Hydrothermal Method for High-Performance Hybrid Supercapacitor Applications. Electrochim. Acta 2021, 390, 138865. https://doi.org/10.1016/j.electacta.2021.138865.Suche in Google Scholar

3. Kaverlavani, S.K.; Moosavifard, S.E.; Bakouei, A. Designing Graphene-Wrapped Nanoporous CuCo2O4 Hollow Spheres Electrodes for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2017, 5, 14301–14309. https://doi.org/10.1039/C7TA03943C.Suche in Google Scholar

4. Lan, M.; Liu, B.; Zhao, R.; Dong, M.; Wang, X.; Fang, L.; Wang, L. Dandelion-like CuCo2O4 Arrays on Ni Foam as Advanced Positive Electrode Material for High-Performance Hybrid Supercapacitors. J. Colloid Interface Sci. 2020, 566, 79–89. https://doi.org/10.1016/j.jcis.2020.01.077.Suche in Google Scholar PubMed

5. Sun, J.; Du, X.; Wu, R.; Zhang, Y.; Xu, C.; Chen, H. Bundlelike CuCo2O4 Microstructures Assembled with Ultrathin Nanosheets as Battery-type Electrode Materials for High-Performance Hybrid Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 8026–8037. https://doi.org/10.1021/acsaem.0c01458.Suche in Google Scholar

6. Zhang, P.; He, H. Rational Rope-like CuCo2O4 Nanosheets Directly on Ni Foam as Multifunctional Electrodes for Supercapacitor and Oxygen Evolution Reaction. J. Alloys Compd. 2020, 826, 153993. https://doi.org/10.1016/j.jallcom.2020.153993.Suche in Google Scholar

7. Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. https://doi.org/10.1021/acsnano.8b01914.Suche in Google Scholar PubMed

8. Samanta, S.; Bhunia, K.; Pradhan, D.; Satpati, B.; Srivastava, R. NiCuCo2O4 Supported Ni-Cu Ion-Exchanged Mesoporous Zeolite Heteronano Architecture: An Efficient, Stable, and Economical Non-precious Electrocatalyst for Methanol Oxidation. ACS Sustainable Chem. Eng. 2018, 6 (2), 2023–2036.10.1021/acssuschemeng.7b03444Suche in Google Scholar

9. Wang, X.; Wu, X.; Xu, B.; Hua, T. Coralloid and Hierarchical Co3O4 Nanostructures Used as Supercapacitors with Good Cycling Stability. J. Solid State Electrochem. 2016, 20, 1303–1309. https://doi.org/10.1007/s10008-016-3125-7.Suche in Google Scholar

10. Wang, Y.; Yang, D.; Lian, J.; Pan, J.; Wei, T.; Sun, Y. Cedar Leaf-like CuCo2O4 Directly Grow on Nickel Foam by a Hydrothermal/Annealing Process as an Electrode for a High-Performance Symmetric Supercapacitor. J. Alloys Compd. 2018, 735, 2046–2052. https://doi.org/10.1016/j.jallcom.2017.12.005.Suche in Google Scholar

11. Jain, S.; Patrike, A.; Badadhe, S.S.; Bhardwaj, M.; Ogale, S. Room-Temperature Ammonia Gas Sensing Using Mixed-Valent CuCo2O4 Nanoplatelets: Performance Enhancement through Stoichiometry Control. ACS Omega 2018, 3, 1977–1982. https://doi.org/10.1021/acsomega.7b01958.Suche in Google Scholar PubMed PubMed Central

12. Sharma, M.; Gaur, A. Cu Doped Zinc Cobalt Oxide Based Solid-State Symmetric Supercapacitors: A Promising Key for High Energy Density. J. Phys. Chem. C 2020, 124, 9–16. https://doi.org/10.1021/acs.jpcc.9b08170.Suche in Google Scholar

13. Shinde, S. K.; Karade, S.S.; Maile, N.C.; Yadav, H. M.; Ghodake, G.S.; Jagadale, A. D.; Kim, D.-Y. Green Synthesis of Novel CuCo2O4 Nanocomposite for Stable Hybrid Supercapacitors by Deep Eutectic Solvents. J. Mol. Liq. 2021, 334, 116390. https://doi.org/10.1016/j.molliq.2021.116390.Suche in Google Scholar

14. Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest Advances in Supercapacitors: from New Electrode Materials to Novel Device Designs. Chem. Soc. Rev. 2017, 46, 6816–6854. https://doi.org/10.1039/C7CS00205J.Suche in Google Scholar

15. Kumar, S.; Kaliamurthy, A.K.; Lee, Y.; Lee, S. High-performance Positive Electrode Material of MXene/FeNi2S4 Nanocomposite for Flexible Supercapacitor with Large Potential Window. J. Energy Storage 2024, 95, 112643. https://doi.org/10.1016/j.est.2024.112643.Suche in Google Scholar

16. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Sankar, G.U.; Balamurugan, K.; Yuvakkumar, R.; Thambidurai, M.; Ravi, G. Investigation of Electrochemical Properties of Various Transition Metals Doped SnO2 Spherical Nanostructures for Supercapacitor Applications. J. Energy Storage 2020, 31, 101530. https://doi.org/10.1016/j.est.2020.101530.Suche in Google Scholar

17. Das, A.K.; Kim, N.H.; Lee, S.H.; Sohn, Y.; Lee, J.H. Facile Synthesis of CuCo2O4 Composite Octahedrons for High Performance Supercapacitor Application. Compos. Part B 2018, 150, 269–276. https://doi.org/10.1016/j.compositesb.2018.07.021.Suche in Google Scholar

18. Vijayakumar, S.; Lee, S.-H.; Ryu, K.-S. Hierarchical CuCo2O4 Nanobelts as a Supercapacitor Electrode with High Areal and Specific Capacitance. Electrochim. Acta 2015, 182, 979–986. https://doi.org/10.1016/j.electacta.2015.10.021.Suche in Google Scholar

19. Pendashteh, A.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Facile Synthesis of Nanostructured CuCo2O4 as a Novel Electrode Material for High-Rate Supercapacitors. Chem. Commun. 2014, 50, 1972. https://doi.org/10.1039/c3cc48773c.Suche in Google Scholar PubMed

20. Alqahtani, D.M.; Zequine, C.; Ranaweera, C.K.; Siam, K.; Kahol, P.K.; Poudel, T.P.; Mishra, S.R.; Gupta, R.K. Effect of Metal Ion Substitution on Electrochemical Properties of Cobalt Oxide. J. Alloys Compd. 2019, 771, 951–959. https://doi.org/10.1016/j.jallcom.2018.09.014.Suche in Google Scholar

21. Zhang, G.; Lou, X.W. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-Performance Supercapacitors. Sci. Rep. 2013, 3, 1470. https://doi.org/10.1038/srep01470.Suche in Google Scholar PubMed PubMed Central

22. Heiba, Z.K.; Farag, N.M.; El-naggar, A.M.; Plaisier, J.R.; Aldhafiri, A.M.; Mohamed, M.B. Influence of Cr and Fe Doping on the Structure, Magnetic and Optical Properties of Nano CuCo2O4. Ceram. Int. 2021, 47, 7888–7897. https://doi.org/10.1016/j.ceramint.2020.11.135.Suche in Google Scholar

23. Liu, D.; Liu, Y.; Liu, X.; Xu, C.; Zhu, J.; Chen, H. Growth of Uniform CuCo2O4 Porous Nanosheets and Nanowires for High-Performance Hybrid Supercapacitors. J. Energy Storage 2022, 52, 105048. https://doi.org/10.1016/j.est.2022.105048.Suche in Google Scholar

24. Silambarasan, M.; Padmanathan, N.; Ramesh, P.S.; Geetha, D. Spinel CuCo2O4 Nanoparticles: Facile One-step Synthesis, Optical, and Electrochemical Properties. Mater. Res. Express 2016, 3, 095021. https://doi.org/10.1088/2053-1591/3/9/095021.Suche in Google Scholar

25. Murugan, A.; Siva, V.; Shameem, A.S.; Pannerselvam, M.; Kim, I.; Al-Sehemi, A.G.; Sivaprakash, P. Boosted Electrochemical Properties of Co3O4 Nanoflakes by the Addition of a Redox-Additive Electrolyte. Z. Phys. Chem. 2024, 0. https://doi.org/10.1515/zpch-2024-0017.Suche in Google Scholar

26. Wang, Z.; Qian, W.; Ran, Y.; Hong, P.; Xiao, X.; Wang, Y. Nanosheets Based Mixed Structure CuCo2O4 Hydrothermally Grown on Ni Foam Applied as Binder-free Supercapacitor Electrodes. J. Energy Storage 2020, 32, 101865. https://doi.org/10.1016/j.est.2020.101865.Suche in Google Scholar

27. Xu, J.; Liu, S.; Liu, Y. Co3O4/ZnO Nanoheterostructure Derived from Core–Shell ZIF-8@ZIF-67 for Supercapacitors. RSC Adv. 2016, 6, 52137–52142. https://doi.org/10.1039/C6RA07773K.Suche in Google Scholar

28. Infanta, J.J.; Sivaprakash, P.; Sakthivel, S.; Kumar, K.A.; Sahadevan, J.; Muthu, S.E.; Kim, I.; Arumugam, S. Investigation of Energy Storage Applications on Nickel Fluoride Nanomaterials under Shock Wave Flow Environments. Malaysian NANO-An International Journal 2023, 3 (1), 31–43; https://doi.org/10.22452/mnij.vol3no1.3.Suche in Google Scholar

29. Kumar, S.; Kaliamurthy, A.K.; Kavu, K.; Paramasivam, S.; Appadurai, T.; Sonachalam, A.; Kim, I.; Lee, S. Effect of Fluoride (CoF2) Based Electrode Material for High Energy and Power Density Asymmetric Flexible Supercapacitors. J. Energy Storage 2024, 87, 111460. https://doi.org/10.1016/j.est.2024.111460.Suche in Google Scholar

30. Sivaprakash, P.; Ashok Kumar, K.; Subalakshmi, K.; Bathula, C.; Sandhu, S.; Arumugam, S. Fabrication of High Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146. https://doi.org/10.1016/j.matlet.2020.128146.Suche in Google Scholar

31. Sivaprakash, P.; Kumar, K.A.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 873, 114379. https://doi.org/10.1016/j.jelechem.2020.114379.Suche in Google Scholar

32. Behzad, H.; Ghodsi, F.E.; Karaağaç, H. High Electrochemical Performance of Cu X Co3−x O4 Nanostructured Electrodes: the Effect of Spinel Inversion and Annealing Temperature. Ionics 2017, 23, 2429–2442. https://doi.org/10.1007/s11581-017-2081-2.Suche in Google Scholar

33. Chinnuraj, I.P.; Ganesan, M.; Palanisamy, G.; Anbarasan, P.M.; Kim, I.; Hasan, I.; Paramasivam, S. Synergistic Enhancement of Electrochemical Supercapacitor Efficiency via Co 3 O 4/GO Composite Electrode. Z. Phys. Chem. 2024, 0. https://doi.org/10.1515/zpch-2024-0584.Suche in Google Scholar

34. Bosco Franklin, J.; Sachin, S.; John Sundaram, S.; Theophil Anand, G.; Dhayal Raj, A.; Kaviyarasu, K. Investigation on Copper Cobaltite (CuCo2O4) and its Composite with Activated Carbon (AC) for Supercapacitor Applications. Mater. Sci. Energy Technol. 2024, 7, 91–98. https://doi.org/10.1016/j.mset.2023.07.006.Suche in Google Scholar

35. Fu, W.; Li, X.; Zhao, C.; Liu, Y.; Zhang, P.; Zhou, J.; Pan, X.; Xie, E. Facile Hydrothermal Synthesis of Flowerlike ZnCo2O4 Microspheres as Binder-free Electrodes for Supercapacitors. Mater. Lett. 2015, 149, 1–4. https://doi.org/10.1016/j.matlet.2015.02.092.Suche in Google Scholar

36. Pendashteh, A.; Moosavifard, S.E.; Rahmanifar, M.S.; Wang, Y.; El-Kady, M.F.; Kaner, R.B.; Mousavi, M.F. Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors. Chem. Mater. 2015, 27, 3919–3926. https://doi.org/10.1021/acs.chemmater.5b00706.Suche in Google Scholar

37. Kalawa, O.; Sichumsaeng, T.; Kidkhunthod, P.; Chanlek, N.; Maensiri, S. Ni-doped MnCo2O4 Nanoparticles as Electrode Material for Supercapacitors. J. Mater. Sci.: Mater. Electron. 2022, 33, 4869–4886. https://doi.org/10.1007/s10854-021-07677-6.Suche in Google Scholar

38. Lu, C.; Yang, Y.; Li, S.; Zhu, M. Nanosheet Floral Clusters of Fe-Doped Co3O4 for High-Performance Supercapacitors. Mater. Chem. Front. 2024, 8, 2282–2292. https://doi.org/10.1039/D4QM00170B.Suche in Google Scholar

39. Babu, C.R.; Avani, A.V.; Shaji, S.; Anila, E.I. Electrochemical Characteristics of Co3O4 Nanoparticles Synthesized via the Hydrothermal Approach for Supercapacitor Applications. J. Solid State Electrochem. 2023, 28, 2203–2210; https://doi.org/10.1007/s10008-023-05744-y.Suche in Google Scholar

40. Shang, Y.; Xie, T.; Gai, Y.; Su, L.; Gong, L.; Lv, H.; Dong, F. Self-assembled Hierarchical Peony-like ZnCo2O4 for High-Performance Asymmetric Supercapacitors. Electrochim. Acta 2017, 253, 281–290. https://doi.org/10.1016/j.electacta.2017.09.042.Suche in Google Scholar

41. Xu, J.; Wang, L.; Zhang, J.; Qian, J.; Liu, J.; Zhang, Z.; Zhang, H.; Liu, X. Fabrication of Porous Double-urchin-like MgCo2O4 Hierarchical Architectures for High-Rate Supercapacitors. J. Alloys Compd. 2016, 688, 933–938. https://doi.org/10.1016/j.jallcom.2016.07.250.Suche in Google Scholar

42. Krishnan, S.G.; Reddy, M.V.; Harilal, M.; Vidyadharan, B.; Misnon, I.I.; Rahim, M.H.A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an Electrode for High Performance Supercapacitors. Electrochim. Acta 2015, 161, 312–321. https://doi.org/10.1016/j.electacta.2015.02.081.Suche in Google Scholar

43. Zhao, Y.; Zhang, Y.; Xu, K. Effect of Precursor on the Morphology and Supercapacitor Performance of CuCo2O4. Int. J. Electrochem. Sci. 2019, 14, 3885–3896. https://doi.org/10.20964/2019.04.62.Suche in Google Scholar

44. Shanmugavani, A.; Selvan, R.K. Improved Electrochemical Performances of CuCo2O4/CuO Nanocomposites for Asymmetric Supercapacitors. Electrochim. Acta 2016, 188, 852–862. https://doi.org/10.1016/j.electacta.2015.12.077.Suche in Google Scholar

45. Li, Q.; Hu, R.; Qi, J.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y.; Zhao, Y. Facile Synthesis of Mesoporous CuCo2O4 nanorods@MnO2 with Core-Shell Structure Grown on RGO for High-Performance Supercapacitor. Mater. Lett. 2019, 249, 151–154. https://doi.org/10.1016/j.matlet.2019.04.043.Suche in Google Scholar

46. Zhang, Y.; Liu, H.; Huang, M.; Zhang, J.M.; Zhang, W.; Dong, F.; Zhang, Y.X. Engineering Ultrathin Co(OH) 2 Nanosheets on Dandelion–like CuCo2O4 Microspheres for Binder‐Free Supercapacitors. ChemElectroChem 2017, 4, 721–727. https://doi.org/10.1002/celc.201600661.Suche in Google Scholar

47. Gao, K.; Li, S.-D. Hollow Fibrous NiCo2O4 Electrodes with Controllable Zn Substitution Sites for Supercapacitors. J. Alloys Compd. 2020, 832, 154927. https://doi.org/10.1016/j.jallcom.2020.154927.Suche in Google Scholar

48. Wu, R.; Sun, J.; Ma, X.; Bao, E.; Du, X.; Xu, C.; Chen, H. Uniform MgCo2O4 Porous Nanoflakes and Nanowires with Superior Electrochemical Performance for Asymmetric Supercapacitors. J. Alloys Compd. 2021, 884, 161087. https://doi.org/10.1016/j.jallcom.2021.161087.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2024-0739).


Received: 2024-03-05
Accepted: 2024-08-23
Published Online: 2024-09-18
Published in Print: 2025-06-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0739/html
Button zum nach oben scrollen