Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets
-
Joseph Anthony Doss Jerries Infanta
, Ashok Kumar Kaliamurthy, Jeyanthinath Mayandi
, Sharmila Saminathanund Sonachalam Arumugam
Abstract
In the present study, the structural and electrochemical properties on Ni–CuCo2O4 (0 ≤ x ≤ 10 %) was studied for the use of active electrode materials in asymmetric supercapacitors prepared by a simple hydrothermal process. The synthesized material’s morphology shows that the nanosheets are assembled with an average diameter of about 50 nm, and the X-ray diffraction results show the spinel cubic structure with the space group of Fd-3mz (No. 227). CuCo2O4 electrodes exhibit a high specific capacitance for the electrodes because of the abundant redox reactions of Co2+/Co3+ and Co3+/Co4+, and Ni at the Co site has displayed exceptional charge-discharge and cyclic stability properties. The electrochemical studies show that the Ni doped CuCo2O4 electrode has the highest pseudocapacitive nature, with ultra-specific capacitances of 803 F g−1, 889 F g−1, 924 F g−1, and 1,086 F g−1 at 1 A g−1 respectively for pure, 2, 6, and 10 % Ni doped CuCo2O4 electrodes. Further, the excellent rate capability with 82 % capacitance retention and 92.3 % Coulombic efficiency were realized after 1,000 cycles. Moreover, the M-H study at room temperature showed paramagnetic behaviour. Additionally, the electrochemical and magnetic characteristics of the CuCo2O4 system is expected to improve as the doping quantity of Ni increased. This study may pave the way for enhanced properties of Ni doped CuCo2O4 for futuristic hybrid devices applications.
Acknowledgments
S. A. wishes to thank UGC-DAE-CSR (Indore), DST (MES and SERB), MHRD-RUSA, TANSCHE (Chennai) and BRNS (Mumbai), Indo-Poland for financial support.
-
Research ethics: Not applicable.
-
Author contributions: All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: Not applicable.
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. BoopathiRaja, R.; Parthibavarman, M.; Nishara Begum, A. Hydrothermal Induced Novel CuCo2O4 Electrode for High Performance Supercapacitor Applications. Vacuum 2019, 165, 96–104. https://doi.org/10.1016/j.vacuum.2019.04.013.Suche in Google Scholar
2. Jayasubramaniyan, S.; Balasundari, S.; Yeom, S.J.; Naresh, N.; Rani, T.; Rapaka, E.V.; Satyanarayana, N.; Lee, H.-W.; Muralidharan, P. Synthesis of Porous CuCo2O4 Nanorods/reduced Graphene Oxide Composites via a Facile Microwave Hydrothermal Method for High-Performance Hybrid Supercapacitor Applications. Electrochim. Acta 2021, 390, 138865. https://doi.org/10.1016/j.electacta.2021.138865.Suche in Google Scholar
3. Kaverlavani, S.K.; Moosavifard, S.E.; Bakouei, A. Designing Graphene-Wrapped Nanoporous CuCo2O4 Hollow Spheres Electrodes for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2017, 5, 14301–14309. https://doi.org/10.1039/C7TA03943C.Suche in Google Scholar
4. Lan, M.; Liu, B.; Zhao, R.; Dong, M.; Wang, X.; Fang, L.; Wang, L. Dandelion-like CuCo2O4 Arrays on Ni Foam as Advanced Positive Electrode Material for High-Performance Hybrid Supercapacitors. J. Colloid Interface Sci. 2020, 566, 79–89. https://doi.org/10.1016/j.jcis.2020.01.077.Suche in Google Scholar PubMed
5. Sun, J.; Du, X.; Wu, R.; Zhang, Y.; Xu, C.; Chen, H. Bundlelike CuCo2O4 Microstructures Assembled with Ultrathin Nanosheets as Battery-type Electrode Materials for High-Performance Hybrid Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 8026–8037. https://doi.org/10.1021/acsaem.0c01458.Suche in Google Scholar
6. Zhang, P.; He, H. Rational Rope-like CuCo2O4 Nanosheets Directly on Ni Foam as Multifunctional Electrodes for Supercapacitor and Oxygen Evolution Reaction. J. Alloys Compd. 2020, 826, 153993. https://doi.org/10.1016/j.jallcom.2020.153993.Suche in Google Scholar
7. Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. https://doi.org/10.1021/acsnano.8b01914.Suche in Google Scholar PubMed
8. Samanta, S.; Bhunia, K.; Pradhan, D.; Satpati, B.; Srivastava, R. NiCuCo2O4 Supported Ni-Cu Ion-Exchanged Mesoporous Zeolite Heteronano Architecture: An Efficient, Stable, and Economical Non-precious Electrocatalyst for Methanol Oxidation. ACS Sustainable Chem. Eng. 2018, 6 (2), 2023–2036.10.1021/acssuschemeng.7b03444Suche in Google Scholar
9. Wang, X.; Wu, X.; Xu, B.; Hua, T. Coralloid and Hierarchical Co3O4 Nanostructures Used as Supercapacitors with Good Cycling Stability. J. Solid State Electrochem. 2016, 20, 1303–1309. https://doi.org/10.1007/s10008-016-3125-7.Suche in Google Scholar
10. Wang, Y.; Yang, D.; Lian, J.; Pan, J.; Wei, T.; Sun, Y. Cedar Leaf-like CuCo2O4 Directly Grow on Nickel Foam by a Hydrothermal/Annealing Process as an Electrode for a High-Performance Symmetric Supercapacitor. J. Alloys Compd. 2018, 735, 2046–2052. https://doi.org/10.1016/j.jallcom.2017.12.005.Suche in Google Scholar
11. Jain, S.; Patrike, A.; Badadhe, S.S.; Bhardwaj, M.; Ogale, S. Room-Temperature Ammonia Gas Sensing Using Mixed-Valent CuCo2O4 Nanoplatelets: Performance Enhancement through Stoichiometry Control. ACS Omega 2018, 3, 1977–1982. https://doi.org/10.1021/acsomega.7b01958.Suche in Google Scholar PubMed PubMed Central
12. Sharma, M.; Gaur, A. Cu Doped Zinc Cobalt Oxide Based Solid-State Symmetric Supercapacitors: A Promising Key for High Energy Density. J. Phys. Chem. C 2020, 124, 9–16. https://doi.org/10.1021/acs.jpcc.9b08170.Suche in Google Scholar
13. Shinde, S. K.; Karade, S.S.; Maile, N.C.; Yadav, H. M.; Ghodake, G.S.; Jagadale, A. D.; Kim, D.-Y. Green Synthesis of Novel CuCo2O4 Nanocomposite for Stable Hybrid Supercapacitors by Deep Eutectic Solvents. J. Mol. Liq. 2021, 334, 116390. https://doi.org/10.1016/j.molliq.2021.116390.Suche in Google Scholar
14. Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest Advances in Supercapacitors: from New Electrode Materials to Novel Device Designs. Chem. Soc. Rev. 2017, 46, 6816–6854. https://doi.org/10.1039/C7CS00205J.Suche in Google Scholar
15. Kumar, S.; Kaliamurthy, A.K.; Lee, Y.; Lee, S. High-performance Positive Electrode Material of MXene/FeNi2S4 Nanocomposite for Flexible Supercapacitor with Large Potential Window. J. Energy Storage 2024, 95, 112643. https://doi.org/10.1016/j.est.2024.112643.Suche in Google Scholar
16. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Sankar, G.U.; Balamurugan, K.; Yuvakkumar, R.; Thambidurai, M.; Ravi, G. Investigation of Electrochemical Properties of Various Transition Metals Doped SnO2 Spherical Nanostructures for Supercapacitor Applications. J. Energy Storage 2020, 31, 101530. https://doi.org/10.1016/j.est.2020.101530.Suche in Google Scholar
17. Das, A.K.; Kim, N.H.; Lee, S.H.; Sohn, Y.; Lee, J.H. Facile Synthesis of CuCo2O4 Composite Octahedrons for High Performance Supercapacitor Application. Compos. Part B 2018, 150, 269–276. https://doi.org/10.1016/j.compositesb.2018.07.021.Suche in Google Scholar
18. Vijayakumar, S.; Lee, S.-H.; Ryu, K.-S. Hierarchical CuCo2O4 Nanobelts as a Supercapacitor Electrode with High Areal and Specific Capacitance. Electrochim. Acta 2015, 182, 979–986. https://doi.org/10.1016/j.electacta.2015.10.021.Suche in Google Scholar
19. Pendashteh, A.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Facile Synthesis of Nanostructured CuCo2O4 as a Novel Electrode Material for High-Rate Supercapacitors. Chem. Commun. 2014, 50, 1972. https://doi.org/10.1039/c3cc48773c.Suche in Google Scholar PubMed
20. Alqahtani, D.M.; Zequine, C.; Ranaweera, C.K.; Siam, K.; Kahol, P.K.; Poudel, T.P.; Mishra, S.R.; Gupta, R.K. Effect of Metal Ion Substitution on Electrochemical Properties of Cobalt Oxide. J. Alloys Compd. 2019, 771, 951–959. https://doi.org/10.1016/j.jallcom.2018.09.014.Suche in Google Scholar
21. Zhang, G.; Lou, X.W. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-Performance Supercapacitors. Sci. Rep. 2013, 3, 1470. https://doi.org/10.1038/srep01470.Suche in Google Scholar PubMed PubMed Central
22. Heiba, Z.K.; Farag, N.M.; El-naggar, A.M.; Plaisier, J.R.; Aldhafiri, A.M.; Mohamed, M.B. Influence of Cr and Fe Doping on the Structure, Magnetic and Optical Properties of Nano CuCo2O4. Ceram. Int. 2021, 47, 7888–7897. https://doi.org/10.1016/j.ceramint.2020.11.135.Suche in Google Scholar
23. Liu, D.; Liu, Y.; Liu, X.; Xu, C.; Zhu, J.; Chen, H. Growth of Uniform CuCo2O4 Porous Nanosheets and Nanowires for High-Performance Hybrid Supercapacitors. J. Energy Storage 2022, 52, 105048. https://doi.org/10.1016/j.est.2022.105048.Suche in Google Scholar
24. Silambarasan, M.; Padmanathan, N.; Ramesh, P.S.; Geetha, D. Spinel CuCo2O4 Nanoparticles: Facile One-step Synthesis, Optical, and Electrochemical Properties. Mater. Res. Express 2016, 3, 095021. https://doi.org/10.1088/2053-1591/3/9/095021.Suche in Google Scholar
25. Murugan, A.; Siva, V.; Shameem, A.S.; Pannerselvam, M.; Kim, I.; Al-Sehemi, A.G.; Sivaprakash, P. Boosted Electrochemical Properties of Co3O4 Nanoflakes by the Addition of a Redox-Additive Electrolyte. Z. Phys. Chem. 2024, 0. https://doi.org/10.1515/zpch-2024-0017.Suche in Google Scholar
26. Wang, Z.; Qian, W.; Ran, Y.; Hong, P.; Xiao, X.; Wang, Y. Nanosheets Based Mixed Structure CuCo2O4 Hydrothermally Grown on Ni Foam Applied as Binder-free Supercapacitor Electrodes. J. Energy Storage 2020, 32, 101865. https://doi.org/10.1016/j.est.2020.101865.Suche in Google Scholar
27. Xu, J.; Liu, S.; Liu, Y. Co3O4/ZnO Nanoheterostructure Derived from Core–Shell ZIF-8@ZIF-67 for Supercapacitors. RSC Adv. 2016, 6, 52137–52142. https://doi.org/10.1039/C6RA07773K.Suche in Google Scholar
28. Infanta, J.J.; Sivaprakash, P.; Sakthivel, S.; Kumar, K.A.; Sahadevan, J.; Muthu, S.E.; Kim, I.; Arumugam, S. Investigation of Energy Storage Applications on Nickel Fluoride Nanomaterials under Shock Wave Flow Environments. Malaysian NANO-An International Journal 2023, 3 (1), 31–43; https://doi.org/10.22452/mnij.vol3no1.3.Suche in Google Scholar
29. Kumar, S.; Kaliamurthy, A.K.; Kavu, K.; Paramasivam, S.; Appadurai, T.; Sonachalam, A.; Kim, I.; Lee, S. Effect of Fluoride (CoF2) Based Electrode Material for High Energy and Power Density Asymmetric Flexible Supercapacitors. J. Energy Storage 2024, 87, 111460. https://doi.org/10.1016/j.est.2024.111460.Suche in Google Scholar
30. Sivaprakash, P.; Ashok Kumar, K.; Subalakshmi, K.; Bathula, C.; Sandhu, S.; Arumugam, S. Fabrication of High Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146. https://doi.org/10.1016/j.matlet.2020.128146.Suche in Google Scholar
31. Sivaprakash, P.; Kumar, K.A.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 873, 114379. https://doi.org/10.1016/j.jelechem.2020.114379.Suche in Google Scholar
32. Behzad, H.; Ghodsi, F.E.; Karaağaç, H. High Electrochemical Performance of Cu X Co3−x O4 Nanostructured Electrodes: the Effect of Spinel Inversion and Annealing Temperature. Ionics 2017, 23, 2429–2442. https://doi.org/10.1007/s11581-017-2081-2.Suche in Google Scholar
33. Chinnuraj, I.P.; Ganesan, M.; Palanisamy, G.; Anbarasan, P.M.; Kim, I.; Hasan, I.; Paramasivam, S. Synergistic Enhancement of Electrochemical Supercapacitor Efficiency via Co 3 O 4/GO Composite Electrode. Z. Phys. Chem. 2024, 0. https://doi.org/10.1515/zpch-2024-0584.Suche in Google Scholar
34. Bosco Franklin, J.; Sachin, S.; John Sundaram, S.; Theophil Anand, G.; Dhayal Raj, A.; Kaviyarasu, K. Investigation on Copper Cobaltite (CuCo2O4) and its Composite with Activated Carbon (AC) for Supercapacitor Applications. Mater. Sci. Energy Technol. 2024, 7, 91–98. https://doi.org/10.1016/j.mset.2023.07.006.Suche in Google Scholar
35. Fu, W.; Li, X.; Zhao, C.; Liu, Y.; Zhang, P.; Zhou, J.; Pan, X.; Xie, E. Facile Hydrothermal Synthesis of Flowerlike ZnCo2O4 Microspheres as Binder-free Electrodes for Supercapacitors. Mater. Lett. 2015, 149, 1–4. https://doi.org/10.1016/j.matlet.2015.02.092.Suche in Google Scholar
36. Pendashteh, A.; Moosavifard, S.E.; Rahmanifar, M.S.; Wang, Y.; El-Kady, M.F.; Kaner, R.B.; Mousavi, M.F. Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors. Chem. Mater. 2015, 27, 3919–3926. https://doi.org/10.1021/acs.chemmater.5b00706.Suche in Google Scholar
37. Kalawa, O.; Sichumsaeng, T.; Kidkhunthod, P.; Chanlek, N.; Maensiri, S. Ni-doped MnCo2O4 Nanoparticles as Electrode Material for Supercapacitors. J. Mater. Sci.: Mater. Electron. 2022, 33, 4869–4886. https://doi.org/10.1007/s10854-021-07677-6.Suche in Google Scholar
38. Lu, C.; Yang, Y.; Li, S.; Zhu, M. Nanosheet Floral Clusters of Fe-Doped Co3O4 for High-Performance Supercapacitors. Mater. Chem. Front. 2024, 8, 2282–2292. https://doi.org/10.1039/D4QM00170B.Suche in Google Scholar
39. Babu, C.R.; Avani, A.V.; Shaji, S.; Anila, E.I. Electrochemical Characteristics of Co3O4 Nanoparticles Synthesized via the Hydrothermal Approach for Supercapacitor Applications. J. Solid State Electrochem. 2023, 28, 2203–2210; https://doi.org/10.1007/s10008-023-05744-y.Suche in Google Scholar
40. Shang, Y.; Xie, T.; Gai, Y.; Su, L.; Gong, L.; Lv, H.; Dong, F. Self-assembled Hierarchical Peony-like ZnCo2O4 for High-Performance Asymmetric Supercapacitors. Electrochim. Acta 2017, 253, 281–290. https://doi.org/10.1016/j.electacta.2017.09.042.Suche in Google Scholar
41. Xu, J.; Wang, L.; Zhang, J.; Qian, J.; Liu, J.; Zhang, Z.; Zhang, H.; Liu, X. Fabrication of Porous Double-urchin-like MgCo2O4 Hierarchical Architectures for High-Rate Supercapacitors. J. Alloys Compd. 2016, 688, 933–938. https://doi.org/10.1016/j.jallcom.2016.07.250.Suche in Google Scholar
42. Krishnan, S.G.; Reddy, M.V.; Harilal, M.; Vidyadharan, B.; Misnon, I.I.; Rahim, M.H.A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an Electrode for High Performance Supercapacitors. Electrochim. Acta 2015, 161, 312–321. https://doi.org/10.1016/j.electacta.2015.02.081.Suche in Google Scholar
43. Zhao, Y.; Zhang, Y.; Xu, K. Effect of Precursor on the Morphology and Supercapacitor Performance of CuCo2O4. Int. J. Electrochem. Sci. 2019, 14, 3885–3896. https://doi.org/10.20964/2019.04.62.Suche in Google Scholar
44. Shanmugavani, A.; Selvan, R.K. Improved Electrochemical Performances of CuCo2O4/CuO Nanocomposites for Asymmetric Supercapacitors. Electrochim. Acta 2016, 188, 852–862. https://doi.org/10.1016/j.electacta.2015.12.077.Suche in Google Scholar
45. Li, Q.; Hu, R.; Qi, J.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y.; Zhao, Y. Facile Synthesis of Mesoporous CuCo2O4 nanorods@MnO2 with Core-Shell Structure Grown on RGO for High-Performance Supercapacitor. Mater. Lett. 2019, 249, 151–154. https://doi.org/10.1016/j.matlet.2019.04.043.Suche in Google Scholar
46. Zhang, Y.; Liu, H.; Huang, M.; Zhang, J.M.; Zhang, W.; Dong, F.; Zhang, Y.X. Engineering Ultrathin Co(OH) 2 Nanosheets on Dandelion–like CuCo2O4 Microspheres for Binder‐Free Supercapacitors. ChemElectroChem 2017, 4, 721–727. https://doi.org/10.1002/celc.201600661.Suche in Google Scholar
47. Gao, K.; Li, S.-D. Hollow Fibrous NiCo2O4 Electrodes with Controllable Zn Substitution Sites for Supercapacitors. J. Alloys Compd. 2020, 832, 154927. https://doi.org/10.1016/j.jallcom.2020.154927.Suche in Google Scholar
48. Wu, R.; Sun, J.; Ma, X.; Bao, E.; Du, X.; Xu, C.; Chen, H. Uniform MgCo2O4 Porous Nanoflakes and Nanowires with Superior Electrochemical Performance for Asymmetric Supercapacitors. J. Alloys Compd. 2021, 884, 161087. https://doi.org/10.1016/j.jallcom.2021.161087.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2024-0739).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Hydrothermally synthesized transition metal doped ZnO nanorods for dye degradation and antibacterial activity
- Exploring the photocatalytic efficacy of core–shell CeO2/TiO2 nanocomposite synthesized via solution combustion synthesis
- Catalyst efficiency through the disorder kinetics to identify its nonlinearity in their properties of Ag3PO4@TiO2 catalyst using UV–visible spectroscopy
- Evaluation of detoxification performance of Pithecellobium dulce seed pod powder upon acid treatment: removal of reactive red 195-A dye and kinetic analysis
- Quantum chemical calculations and molecular docking studies of 5-amino-3-(2,5-dimethoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets
- Synthesis, characterization and photo catalytic activity of silver nano particle derived from Arachis hypogaea L. seed peel extracts
- The antibacterial efficacy of reduced graphene oxide (rGO) and rGO/ZnO composites produced through thermal pyrolysis method against various bacterial strains
- Empirical investigation and performance evaluation of flat-plate solar water heating systems: a comparative analysis with and without heat exchangers
- ZIF-67 derived N doped carbon embedded CoxP for superior hydrogen evolution
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Hydrothermally synthesized transition metal doped ZnO nanorods for dye degradation and antibacterial activity
- Exploring the photocatalytic efficacy of core–shell CeO2/TiO2 nanocomposite synthesized via solution combustion synthesis
- Catalyst efficiency through the disorder kinetics to identify its nonlinearity in their properties of Ag3PO4@TiO2 catalyst using UV–visible spectroscopy
- Evaluation of detoxification performance of Pithecellobium dulce seed pod powder upon acid treatment: removal of reactive red 195-A dye and kinetic analysis
- Quantum chemical calculations and molecular docking studies of 5-amino-3-(2,5-dimethoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets
- Synthesis, characterization and photo catalytic activity of silver nano particle derived from Arachis hypogaea L. seed peel extracts
- The antibacterial efficacy of reduced graphene oxide (rGO) and rGO/ZnO composites produced through thermal pyrolysis method against various bacterial strains
- Empirical investigation and performance evaluation of flat-plate solar water heating systems: a comparative analysis with and without heat exchangers
- ZIF-67 derived N doped carbon embedded CoxP for superior hydrogen evolution