Abstract
This study investigates the photocatalytic efficacy of core–shell CeO2/TiO2 nanocomposite (CT-NC) synthesized via solution combustion synthesis. Various characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV–visible spectroscopy (UV), photoluminescence spectroscopy (PL), Raman spectroscopy, field emission scanning electron microscopy (FESEM) along with energy-dispersive spectroscopy (EDS) analysis and high-resolution transmission electron microscopy with selected area electron diffraction (HRTEM-SAED) were employed to analyze the nanomaterials. XRD pattern confirmed the realization of cubic and tetragonal phases of CeO2 and TiO2. The vibrational modes observed below 800 cm−1 confirmed the metal-oxygen bonds of the synthesized samples. The energy bandgap (Eg) of CT-NC, as estimated from UV–vis spectra, reduced to 2.28 eV, resulting in a significant enhancement of the photocatalytic activity. The various emission peaks in the visible region due to the oxygen vacancies facilitated the generation of Reactive Oxygen Species (ROS). EDS analysis confirmed the presence of elements and the purity of the samples. Furthermore, CT-NC demonstrated remarkable dye degradation efficiency, achieving a maximum efficiency of 98.15 % under visible light irradiation for 120 min. This enhanced activity is attributed to the Advanced Oxidation Process (AOPs). Overall, the results highlight the potential of CT-NC as an efficient photocatalyst for environmental remediation.
Acknowledgments
The author is grateful to Basic Research Lab, Jayaraj Annapackiam College for Women, Periyakulam, Tamil Nadu, India.
-
Research ethics: Not applicable.
-
Author contributions: Fathima Khyrun Muhammad: conceptualization, methodology, writing – original draft. Jegatha Christy Arulanandam: conceptualization, methodology, formal analysis, data curation, visualization, investigation, writing – review and editing.
-
Competing interests: The authors declare that they have no conflict of interest to the publication of this article.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Mishra, R. K.; Mentha, S. S.; Misra, Y.; Dwivedi, N. Emerging Pollutants of Severe Environmental Concern in Water and Wastewater: A Comprehensive Review on Current Developments and Future Research. Water-Energy Nexus 2023, 6, 74–95; https://doi.org/10.1016/j.wen.2023.08.002.Search in Google Scholar
2. Abd El Khalk, A. A.; Betiha, M. A.; Mansour, A. S.; Abd El Wahed, M. G.; Al-Sabagh, A. M. High Degradation of Methylene Blue Using a New Nanocomposite Based on Zeolitic Imidazolate Framework-8. ACS Omega 2021, 6 (40), 26210–26220; https://doi.org/10.1021/acsomega.1c03195.Search in Google Scholar PubMed PubMed Central
3. Ahmad, N.; Sultana, S.; Faisal, S. M.; Ahmed, A.; Sabir, S.; Khan, M. Z. Zinc Oxide-Decorated Polypyrrole/chitosan Bionanocomposites with Enhanced Photocatalytic, Antibacterial and Anticancer Performance. RSC Adv. 2019, 9 (70), 41135–41150; https://doi.org/10.1039/c9ra06493a.Search in Google Scholar PubMed PubMed Central
4. Lin, J.; Ye, W.; Xie, M.; Seo, D. H.; Luo, J.; Wan, Y.; Van der Bruggen, B. Env.ntl.impacts and Remediation of Dye-Containing Wastewater. Nat. Rev. Earth Environ. 2023, 4 (11), 785–803; https://doi.org/10.1038/s43017-023-00489-8.Search in Google Scholar
5. Tsapovsky, L.; Simhon, M.; Calderone, V. R.; Rothenberg, G.; Gitis, V. Retention of Organics and Degradation of Micropollutants in Municipal Wastewater Using Impregnated Ceramics. Clean Technol. Environ. Policy 2020, 22 (3), 689–700; https://doi.org/10.1007/s10098-020-01813-2.Search in Google Scholar
6. Vasiljevic, Z. Z.; Dojcinovic, M. P.; Vujancevic, J. D.; Jankovic-Castvan, I.; Ognjanovic, M.; Tadic, N. B.; Stojadinovic, S.; Brankovic, G. O.; Nikolic, M. V. Photocatalytic Degradation of Methylene Blue under Natural Sunlight Using Iron Titanate Nanoparticles Prepared by a Modified Sol–Gel Method. R. Soc. Open Sci. 2020, 7 (9), 200708; https://doi.org/10.1098/rsos.200708.Search in Google Scholar PubMed PubMed Central
7. Cabrera, A. F.; Rodríguez Torres, C. E.; Marchetti, S. G.; Stewart, S. J. Degradation of Methylene Blue Dye under Dark and Visible Light Conditions in Presence of Hybrid Composites of Nanostructured MgFe2O4 Ferrites and Oxygenated Organic Compounds. J. Environ. Chem. Eng. 2020, 8 (5), 104274; https://doi.org/10.1016/j.jece.2020.104274.Search in Google Scholar
8. Oladoye, P. O.; Omotola, E. O.; Oyewola, O. J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678; https://doi.org/10.1016/j.rineng.2022.100678.Search in Google Scholar
9. Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. J. Ind. Eng. Chem. 2021, 97, 111–128; https://doi.org/10.1016/j.jiec.2021.02.017.Search in Google Scholar
10. Kalaycıoğlu, Z.; Özuğur Uysal, B.; Pekcan, Ö.; Erim, F. B. Efficient Photocatalytic Degradation of Methylene Blue Dye from Aqueous Solution with Cerium Oxide Nanoparticles and Graphene Oxide-Doped Polyacrylamide. ACS Omega 2023, 8 (14), 13004–13015; https://doi.org/10.1021/acsomega.3c00198.Search in Google Scholar PubMed PubMed Central
11. Aroob, S.; Carabineiro, S. A. C.; Taj, M. B.; Bibi, I.; Raheel, A.; Javed, T.; Yahya, R.; Alelwani, W.; Verpoort, F.; Kamwilaisak, K.; Al-Farraj, S.; Sillanpää, M. Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts 2023, 13 (3), 502; https://doi.org/10.3390/catal13030502.Search in Google Scholar
12. Akbari, A.; Sabouri, Z.; Hosseini, H. A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of Nickel Oxide Nanoparticles as a Photocatalyst in Dyes Degradation and Evaluation of Effective Parameters in Their Removal from Aqueous Environments. Inorg. Chem. Commun. 2020, 115, 107867; https://doi.org/10.1016/j.inoche.2020.107867.Search in Google Scholar
13. Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res. Lett. 2017, 12 (1), 143; https://doi.org/10.1186/s11671-017-1904-4.Search in Google Scholar PubMed PubMed Central
14. Sathiyan, K.; Bar-Ziv, R.; Mendelson, O.; Zidki, T. Controllable Synthesis of TiO2 Nanoparticles and Their Photocatalytic Activity in Dye Degradation. Mater. Res. Bull. 2020, 126, 110842; https://doi.org/10.1016/j.materresbull.2020.110842.Search in Google Scholar
15. Rajeshwari, K. M.; Suhasini, M. R.; Bindya, S.; Hemavathi, A. B.; Ali, N.; Amachawadi, R. G.; Shivamallu, C.; Hallur, R. L. S.; Majani, S. S.; Prasad Kollur, S. Photocatalytic Efficacy of Magnesium Oxide Nanoparticles in Dye Degradation: A Sustainable One-Pot Synthesis Utilizing Syzygium Samarangense L. Extract. Results Chem. 2023, 6, 101193; https://doi.org/10.1016/j.rechem.2023.101193.Search in Google Scholar
16. Karthikeyan, S.; Dhanakodi, K.; Surendhiran, S.; Jagan, K. S. G.; Thirunavukkarasu, P.; Arunraja, L. Effect of Synthesis Parameters on the Structural, Morphological Characteristics, and Photocatalytic Activity of La2O3 Nanoparticles. J. Indian Chem. Soc. 2023, 100 (1), 100860; https://doi.org/10.1016/j.jics.2022.100860.Search in Google Scholar
17. Zinatloo-Ajabshir, S.; Mortazavi-Derazkola, S.; Salavati- Niasari, M. Sonochemical Synthesis, Characterization and Photodegradation of Organic Pollutant over Nd2O3 Nanostructures Prepared via a New Simple Route. Sep. Purif. Technol. 2017, 178, 138–146; https://doi.org/10.1016/j.seppur.2017.01.034.Search in Google Scholar
18. Govindasamy, R.; Govindarasu, M.; Alharthi, S. S.; Mani, P.; Bernaurdshaw, N.; Gomathi, T.; Ansari, M. A.; Alomary, M. N.; Atwah, B.; Malik, M. S.; Rajeswari, V. D.; Rekha, K.; Ahmed, S. A.; Thiruvengadam, M. Sustainable Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles Using Lantana Camara Leaf Extracts: Physicochemical Characterization, Photocatalytic Degradation, Antibacterial, and Anticancer Potency. Nanomaterials 2022, 12 (14), 2393; https://doi.org/10.3390/nano12142393.Search in Google Scholar PubMed PubMed Central
19. Iqbal, A.; Ahmed, A. S.; Ahmad, N.; Shafi, A.; Ahamad, T.; Khan, M. Z.; Srivastava, S. Biogenic Synthesis of CeO2 Nanoparticles and its Potential Application as an Efficient Photocatalyst for the Degradation of Toxic Amido Black Dye. Environ. Nanotechnol., Monit. Manage. 2021, 16, 100505; https://doi.org/10.1016/j.enmm.2021.100505.Search in Google Scholar
20. Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9 (12), 2489; https://doi.org/10.3390/app9122489.Search in Google Scholar
21. Kumari, H.; Sonia, S.; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; Kumar, A.; Parmar, R. A Review on Photocatalysis Used for Wastewater Treatment: Dye Degradation. Water, Air, Soil Pollut. 2023, 234 (6), 349; https://doi.org/10.1007/s11270-023-06359-9.Search in Google Scholar PubMed PubMed Central
22. Ismael, M. Environmental Remediation and Sustainable Energy Generation via Photocatalytic Technology Using Rare Earth Metals Modified G-C3n4: A Review. J. Alloys Compd. 2023, 191, 167469; https://doi.org/10.1016/j.jallcom.2022.167469.Search in Google Scholar
23. Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New Understanding of the Difference of Photocatalytic Activity Among Anatase, Rutile and Brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16 (38), 20382–20386; https://doi.org/10.1039/c4cp02201g.Search in Google Scholar PubMed
24. Zahoor, M.; Arshad, A.; Khan, Y.; Iqbal, M.; Bajwa, S. Z.; Soomro, R. A.; Ahmad, I.; Butt, F. K.; Iqbal, M. Z.; Wu, A.; Khan, W. S. Enhanced Photocatalytic Performance of CeO2–TiO2 Nanocomposite for Degradation of Crystal Violet Dye and Industrial Waste Effluent. Appl. Nanosci. 2018, 8 (5), 1091–1099; https://doi.org/10.1007/s13204-018-0730-z.Search in Google Scholar
25. El-Kholy, R. A.; Isawi, H.; Zaghlool, E.; Soliman, E. A.; Khalil, M. M. H.; Said, M. M.; El-Aassar, A. M. Preparation and Characterization of Rare Earth Element Nanoparticles for Enhanced Photocatalytic Degradation. Environ. Sci. & Pollut. Res. 2023, 30 (26), 69514–69532; https://doi.org/10.1007/s11356-023-27090-2.Search in Google Scholar PubMed PubMed Central
26. Xu, C.; Qu, X. Cerium Oxide Nanoparticle: a Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater. 2014, 6 (3); https://doi.org/10.1038/am.2013.88.Search in Google Scholar
27. Hoang, A. T. Combustion Behavior, Performance and Emission Characteristics of Diesel Engine Fuelled with Biodiesel Containing Cerium Oxide Nanoparticles: A Review. Fuel Process. Technol. 2021, 218, 106840; https://doi.org/10.1016/j.fuproc.2021.106840.Search in Google Scholar
28. Singh, K. R. B.; Nayak, V.; Sarkar, T.; Singh, R. P. Cerium Oxide Nanoparticles: Properties, Biosynthesis and Biomedical Application. RSC Adv. 2020, 10 (45), 27194–27214; https://doi.org/10.1039/d0ra04736h.Search in Google Scholar PubMed PubMed Central
29. Zhang, Y.; Ju, S.; Casals, G.; Tang, J.; Lin, Y.; Li, X. i.; Liang, L.; Jia, Z.; Zeng, M.; Casals, E. Facile Aqueous Synthesis and Comparative Evaluation of TiO2-Semiconductor and TiO2-Metal Nanohybrid Photocatalysts in Antibiotics Degradation under Visible Light. RSC Adv. 2023, 13, 33187–33203; https://doi.org/10.1039/d3ra06231g.Search in Google Scholar PubMed PubMed Central
30. Ramakrishnan, K.; Gayathri, V.; Aravinthkumar, K.; Ramachandran, K.; Ajitha, B.; Rameshbabu, M.; Sasiflorence, S.; Karazhanov, S.; Praba, K.; Raja Mohan, C. TiO2/CeO2 Core/Shell Nanostructures for Photocatalytic and Photo Electrochemical Applications. Inorg. Chem. Commun. 2022, 144, 109842; https://doi.org/10.1016/j.inoche.2022.109842.Search in Google Scholar
31. Malekkiani, M.; Ravari, F.; Heshmati Jannat Magham, A.; Dadmehr, M.; Groiss, H.; Hosseini, H. A.; Sharif, R. Fabrication of Graphene-Based TiO2@CeO2and CeO2@TiO2Core–Shell Heterostructures for Enhanced Photocatalytic Activity and Cytotoxicity. ACS Omega 2022, 7, 30601–30621; https://doi.org/10.1021/acsomega.2c04338.Search in Google Scholar PubMed PubMed Central
32. Parthasarathy, P.; Vivekanandan, S. Biocompatible TiO2–CeO2 Nano-Composite Synthesis, Characterization and Analysis on Electrochemical Performance for Uric Acid Determination. Ain Shams Eng. J. 2020, 11 (3), 777–785; https://doi.org/10.1016/j.asej.2019.11.011.Search in Google Scholar
33. Karunakaran, C.; Gomathisankar, P. Solvothermal Synthesis of CeO2–TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide. ACS Sustain. Chem. Eng. 2013, 1 (12), 1555–1563; https://doi.org/10.1021/sc400195n.Search in Google Scholar
34. Kumar, V.; Chen, W.; Zhang, X.; Jiang, Y.; Koshy, P.; Sorrell, C. C. Properties and Performance of Photocatalytic CeO2, TiO2, and CeO2–TiO2 Layered Thin Films. Ceram. Int. 2019, 45 (17), 22085–22094; https://doi.org/10.1016/j.ceramint.2019.07.225.Search in Google Scholar
35. Sharma, S.; Kumar, N.; Mari, B.; Chauhan, N. S.; Mittal, A.; Maken, S.; Kumari, K. Solution Combustion Synthesized TiO2/Bi2O3/CuO Nano-Composites and Their Photocatalytic Activity Using Visible LEDs Assisted Photoreactor. Inorg. Chem. Commun. 2021, 125, 108418; https://doi.org/10.1016/j.inoche.2020.108418.Search in Google Scholar
36. Nadeem, M. S.; Munawar, T.; Mukhtar, F.; Naveed ur Rahman, M.; Riaz, M.; Iqbal, F. Enhancement in the Photocatalytic and Antimicrobial Properties of ZnO Nanoparticles by Structural Variations and Energy Bandgap Tuning through Fe and Co Co-doping. Ceram. Int. 2021, 47 (8), 11109–11121; https://doi.org/10.1016/j.ceramint.2020.12.234.Search in Google Scholar
37. Isik, M.; Delice, S.; Gasanly, N. M. Temperature Dependence of Band Gap of CeO2 Nanoparticle Photocatalysts. Phys. E: Low-Dimens. Syst. Nanostructures. 2023, 150, 115712; https://doi.org/10.1016/j.physe.2023.115712.Search in Google Scholar
38. Xing, J.; Li, Y. H.; Jiang, H. B.; Wang, Y.; Yang, H. G. The Size and Valence State Effect of Pt on Photocatalytic H2 Evolution over Platinized TiO2 Photocatalyst. Int. J. Hydrogen Energy. 2014, 39 (3), 1237–1242; https://doi.org/10.1016/j.ijhydene.2013.11.041.Search in Google Scholar
39. Van Hao, N.; Tung, D. H.; Hung, N. P.; Hoa, V. X.; Ha, N. T.; Khanh Van, N. T.; Tan, P. T.; Van Trinh, P. Green, Facile and Fast Synthesis of Silver Nanoparticles by Using Solution Plasma Techniques and Their Antibacterial and Anticancer Activities. RSC Adv. 2023, 13 (32), 21838–21849; https://doi.org/10.1039/d3ra03454b.Search in Google Scholar PubMed PubMed Central
40. Hussein, A. M.; Dannoun, E. M. A.; Aziz, S. B.; Brza, M. A.; Rebar, T.; Abdulwahid, R. T.; Hussen, S. A.; Rostam, S.; Rostam, S. M. T.; Muhammad, D. S. Steps toward the Band Gap Identification in Polystyrene Based Solid Polymer Nanocomposites Integrated with Tin Titanate Nanoparticles. Polymers 2020, 12, 2320; https://doi.org/10.3390/polym12102320.Search in Google Scholar PubMed PubMed Central
41. Thirumalraj, B.; Rajkumar, C.; Chen, S.; Palanisamy, S. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine. Sci. Rep. 2017, 7 (1), 41213; https://doi.org/10.1038/srep41213.Search in Google Scholar PubMed PubMed Central
42. Suzuki, V. Y.; Amorin, L. H. C.; Fabris, G.; Fabris, G. S. L.; Dey, S.; Sambrano, J. R.; Cohen, H.; Oron, D.; La Porta, F. A. Enhanced Photocatalytic and Photoluminescence Properties Resulting from Type-I Band Alignment in the Zn2 GeO4/g-C3 N4 Nanocomposites. Catalyst 2022, 12, 692; https://doi.org/10.3390/catal12070692.Search in Google Scholar
43. Sagadevan, S.; Lett, J. A.; Fatimah, I.; Selvi, K. T.; Sivasankaran, R. P.; Weldegebrieal, G. K.; Oh, W. C. Photocatalytic and Electrochemical Activity of Magnesium Oxide Nanoballs Synthesized via a Hydrothermal Route. Processes 2022, 10 (10), 2098; https://doi.org/10.3390/pr10102098.Search in Google Scholar
44. Habte, A. G.; Hone, F. G.; Dejene, F. B. Zn Doping Effect on the Properties of SnO2 Nanostructure by Co-precipitation Technique. Appl. Phys. A 2019, 125 (6), 402; https://doi.org/10.1007/s00339-019-2695-5.Search in Google Scholar
45. Jayakumar, G.; Albert Irudayaraj, A.; Dhayal Raj, A. A Comprehensive Investigation on the Properties of Nanostructured Cerium Oxide. Opt. Quantum Electron. 2019, 51 (9), 312; https://doi.org/10.1007/s11082-019-2029-z.Search in Google Scholar
46. Palomino-Merino, R.; Trejo-Garcia, P.; Portillo-Moreno, O.; Jiménez-Sandoval, S.; Tomás, S. A.; Zelaya-Angel, O.; Lozada-Morales, R.; Castaño, V. M. Red Shifts of the Eg(1) Raman Mode of Nanocrystalline TiO2:Er Monoliths Grown by Sol–Gel Process. Opt. Mater. 2015, 46, 345–349; https://doi.org/10.1016/j.optmat.2015.04.042.Search in Google Scholar
47. Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M. V. R. Ultrasensitive Resistivity-Based Ethanol Sensor Based on the Use of CeO2–Fe2O3 Core–Shell Microclusters. Mikrochim. Acta 2019, 186 (11), 712; https://doi.org/10.1007/s00604-019-3809-7.Search in Google Scholar PubMed
48. Hassan, M. E.-D. R.; Barakat, M. E. S.; Yosef, E. H. E. Synthesis and Evaluation of Core–Shell Nanocomposites for the Photodegradation of Liner Alkyl-Benzene Sulfonate Water Contaminations. IJEST 2024, 21, 3185–3200; https://doi.org/10.1007/s13762-023-05181-4.Search in Google Scholar
49. Srinivasan, M. P.; Uthiram, C.; Ayeshamariam, A.; Kaviyarasu, K.; Punithavelan, N. Dielectric Performance of CeO2/ZnO Core–Shell Nanocomposite with Their Structural, Optical and Morphological Properties. J. King Saud Univ. Sci. 2023, 35 (2), 102508; https://doi.org/10.1016/j.jksus.2022.102508.Search in Google Scholar
50. Dai, S.; Wu, Y.; Sakai, T.; Du, Z.; Sakai, H.; Abe, M. Preparation of Highly Crystalline TiO2 Nanostructures by Acid-Assisted Hydrothermal Treatment of Hexagonal-Structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton. Nanoscale Res. Lett. 2010, 5 (11), 1829–1835; https://doi.org/10.1007/s11671-010-9720-0.Search in Google Scholar PubMed PubMed Central
51. Ghanem, A. F.; Badawy, A. A.; Mohram, M. E.; Abdel Rehim, M. H. Synergistic Effect of Zinc Oxide Nanorods on the Photocatalytic Performance and the Biological Activity of Graphene Nano Sheets. Heliyon 2020, 6 (2); https://doi.org/10.1016/j.heliyon.2020.e03283.Search in Google Scholar PubMed PubMed Central
52. Berehe, B. A.; Assen, A. H.; Kumar, A. S. K.; Ulla, H.; Duma, A. D.; Chang, J.; Gedda, G.; Girma, W. M. Highly Efficient Visible Light Active ZnO/Cu-DPA Composite Photocatalysts for the Treatment of Wastewater Contaminated with Organic Dye. Sci. Rep. 2023, 13 (1), 16454; https://doi.org/10.1038/s41598-023-43842-z.Search in Google Scholar PubMed PubMed Central
53. Afza, N.; Shivakumar, M. S.; Alam, M. W.; Kumar, A. N.; Bhatt, A. S.; Murthy, H. C. A.; Ravikumar, C. R.; Mylarappa, M.; Selvanandan, S. Facile Hydrothermal Synthesis of Cerium oxide/rGO Nanocomposite for Photocatalytic and Supercapacitor Applications. Appl. Surf. Sci. 2022, 11, 100307; https://doi.org/10.1016/j.apsadv.2022.100307.Search in Google Scholar
54. Okla, M. K.; Harini, G.; Dawoud, T. M.; Akshhayya, C.; Mohebaldin, A.; AL-ghamdi, A. A.; Soufan, W.; Abdel-Maksoud, M. A.; AbdElgawad, H.; Raju, L. L.; Thomas, A. M.; Sudheer Khan, S. Fabrication of MnFe2O4 Spheres Modified CeO2 Nano-Flakes for Sustainable Photodegradation of MB Dye and Antimicrobial Activity: A Brief Computational Investigation on Reactive Sites and Degradation Pathway. Colloids Surf A 2022, 641, 128566; https://doi.org/10.1016/j.colsurfa.2022.128566.Search in Google Scholar
55. Syed, A.; Yadav, L. S. R.; Bahkali, A. H.; Elgorban, A. M.; Abdul Hakeem, D.; Ganganagappa, N. Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities. Crystals 2020, 10, 817; https://doi.org/10.3390/cryst10090817.Search in Google Scholar
56. Selvi, S.; Rajendran, R.; Jayamani, N. Hydrothermal Fabrication and Characterization of Novel CeO2/PbWO4 Nanocomposite for Enhanced Visible-Light Photocatalytic Performance. Appl. Water Sci. 2021, 93.10.1007/s13201-021-01429-xSearch in Google Scholar
57. Fathima Khyrun, S. M.; Jegatha Christy, A.; Mayandi, J.; Sagadevan, S. Synergistic Effect of Nano-Floret CeO2/ZnO Nanocomposite as an Efficient Photocatalyst for Environmental Remediation. Ceram. Int. 2024, 50, 11817–11832; https://doi.org/10.1016/j.ceramint.2024.01.086.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Hydrothermally synthesized transition metal doped ZnO nanorods for dye degradation and antibacterial activity
- Exploring the photocatalytic efficacy of core–shell CeO2/TiO2 nanocomposite synthesized via solution combustion synthesis
- Catalyst efficiency through the disorder kinetics to identify its nonlinearity in their properties of Ag3PO4@TiO2 catalyst using UV–visible spectroscopy
- Evaluation of detoxification performance of Pithecellobium dulce seed pod powder upon acid treatment: removal of reactive red 195-A dye and kinetic analysis
- Quantum chemical calculations and molecular docking studies of 5-amino-3-(2,5-dimethoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets
- Synthesis, characterization and photo catalytic activity of silver nano particle derived from Arachis hypogaea L. seed peel extracts
- The antibacterial efficacy of reduced graphene oxide (rGO) and rGO/ZnO composites produced through thermal pyrolysis method against various bacterial strains
- Empirical investigation and performance evaluation of flat-plate solar water heating systems: a comparative analysis with and without heat exchangers
- ZIF-67 derived N doped carbon embedded CoxP for superior hydrogen evolution
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Hydrothermally synthesized transition metal doped ZnO nanorods for dye degradation and antibacterial activity
- Exploring the photocatalytic efficacy of core–shell CeO2/TiO2 nanocomposite synthesized via solution combustion synthesis
- Catalyst efficiency through the disorder kinetics to identify its nonlinearity in their properties of Ag3PO4@TiO2 catalyst using UV–visible spectroscopy
- Evaluation of detoxification performance of Pithecellobium dulce seed pod powder upon acid treatment: removal of reactive red 195-A dye and kinetic analysis
- Quantum chemical calculations and molecular docking studies of 5-amino-3-(2,5-dimethoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Enhancing the electrochemical performance of Ni-doped CuCo2O4 electrode material through 2D layered sheets
- Synthesis, characterization and photo catalytic activity of silver nano particle derived from Arachis hypogaea L. seed peel extracts
- The antibacterial efficacy of reduced graphene oxide (rGO) and rGO/ZnO composites produced through thermal pyrolysis method against various bacterial strains
- Empirical investigation and performance evaluation of flat-plate solar water heating systems: a comparative analysis with and without heat exchangers
- ZIF-67 derived N doped carbon embedded CoxP for superior hydrogen evolution