Molecular structure, spectroscopy, molecular docking, and molecular dynamic studies of tetrahydroneoprzewaquinone as potent cervical cancer agent
-
Aniekan E. Owen
, Ernest C. Agwamba, Mathias E. Gideon
, Kelechi Chukwuemeka , Emmanuel U. Ejiofor , Innocent Benjamin, Eze F. Ahukwe
, Festus O. Ogungbemiro , Kube T. Maxwell , Amanda-Lee E. Manicum und Hitler Louis
Abstract
Cervical cancer is one of the most prevalent cancer-related diseases, causing accelerated morbidity and mortality rates in low-income countries and African states. This study explores the potential of (3R,3′R)-2,2′,3,3′-tetrahydroneoprzewaquinone (TDN) as a treatment for cervical cancer by investigating its structural and molecular properties using molecular modelling technique, which include; DFT, molecular docking, molecular dynamic simulation. The results are promising, with TDN demonstrating exceptional stability in the energy gap (Eg) as well as through natural bond order analysis (NBO). π → σ* electronic transitions were found to contribute mainly to the molecule’s stability, with an outstanding total stabilization energy (E(2)). Docking exercises showed that TDN binds more favorably to the pro-apoptotic receptor 4s0o with a stronger H-bond compared to the conventional DOX drug, which interacted less effectively with TDN and more strongly with the anti-apoptotic protein, forming an outstanding strong H-bond. Molecular dynamics simulations also revealed that TDNʼs interaction with the pro-apoptotic protein (TDN_4S0o) was more stable than the standard DOX drug (DOX_4s0o). The H-bond plot indicated that TDN could effectively interact with both anti and pro-apoptotic receptors, forming approximately 1 to 4 hydrogen bonds between TDN_1g5M with respect to each picosecond (ps) ranging from 0 to 1000 ps. In contrast, the number of hydrogen bonds fluctuated when DOX interacted with the anti-apoptotic protein (1g5M), ranging from 1 to 5 H-bonds. Overall, these results suggest that TDN may be a promising drug candidate for cervical cancer treatment.
Acknowledgments
The authors would like to acknowledge the centre for high performance computing (CHPC), at the University of Johannesburg, South Africa for providing computational resources for this research project.
-
Ethics approval: Not applicable.
-
Informed concerns: Not applicable.
-
Competing interests: All authors declare zero financial or inter-personal conflict of interest that could have influenced the research work or results reported in this research paper.
-
Research funding: This research was not funded by any Governmental or Non-governmental agency.
-
Data availability: All data are contained within the manuscript and electronic supporting information (ESI).
References
1. Wang, M., Niu, A., Gong, Z., Xu, Z., Li, L., Li, B., Wang, J. PEG-amino acid-przewaquinone a conjugations: synthesis, physicochemical properties and protective effect in a rat model of brain ischemia-reperfusion. Bioorg. Med. Chem. Lett. 2020, 30, 126780, https://doi.org/10.1016/j.bmcl.2019.126780.Suche in Google Scholar PubMed
2. Parasuraman, S. Prediction of activity spectra for substances. J. Pharm & pharmacotherapeutics. 2011, 2, 52.10.4103/0976-500X.77119Suche in Google Scholar PubMed PubMed Central
3. Lamtha, T., Krobthong, S., Yingchutrakul, Y., Samutrtai, P., Gerner, C., Tabtimmai, L., Choowongkomon, K. A novel nanobody as therapeutics target for EGFR-positive colorectal cancer therapy: exploring the effects of the nanobody on SW480 cells using proteomics approach. Proteome Sci. 2022, 20, 9, https://doi.org/10.1186/s12953-022-00190-6.Suche in Google Scholar PubMed PubMed Central
4. Hu, Y., Liu, C., Muyldermans, S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front. Immunol. 2017, 8, https://doi.org/10.3389/fimmu.2017.01442.Suche in Google Scholar PubMed PubMed Central
5. Louis, H., Egemonye, T. G. C., Edet, H. O., Agwamba, E. C., Unimuke, T. O., Adeyinka, A. S. Synthesis, characterization, DFT studies, and molecular modeling of hydrazinelidene-3-oxo-3-(p-olyl) propanal derivatives as potential candidate for Hepatitis B and C treatment. Viet. J. Chem. 2022.10.1002/vjch.202200086Suche in Google Scholar
6. Agwamba, E. C., Louis, H., Benjamin, I., Apebende, C. G., Unimuke, T. O., Edet, H. O., Nwagu, A. D., Adeyinka, A. S. (E)-2-((3-nitrophenyl) diazenyl)-3-oxo-3-phenylpropanal: experimental, DFT studies, and molecular docking investigations. Chem. Afr. 2022, 5, 2131–2147, https://doi.org/10.1007/s42250-022-00468-4.Suche in Google Scholar
7. Benjamin, I., Louis, H., Udoikono, A. D., Agwamba, E. C., Unimuke, T. O., Ahuekwe, E. F. Hydrazineylidene-3-oxopropanal derivatives as antiviral agents for treatment of HBV and HCV: experimental, DFT, and molecular docking studies. Viet. J. Chem. 2023, 61, 109–125.Suche in Google Scholar
8. Makhlouf, J., Louis, H., Benjamin, I., Ukwenya, E., Valkonen, A., Smirani, W. Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex. J. Mol. Struct. 2023, 1272, 134223, https://doi.org/10.1016/j.molstruc.2022.134223.Suche in Google Scholar
9. Yan, J., Guo, W., Zhou, L., Cao, Z., Pei, J., Deng, Y., Li, B., Liu, D., Guo, D., Peng, C. A neoprzewaquinone analogue from salvia miltiorrhiza Bunge. Rec. Nat. Prod. 2022, 16, 572–578; https://doi.org/10.25135/rnp.313.2111.2253.Suche in Google Scholar
10. Jiang, Z., Gao, W., Huang, L. Tanshinones, critical pharmacological components in salvia miltiorrhiza. Front. Pharmacol. 2019, 10, 1–14, https://doi.org/10.3389/fphar.2019.00202.Suche in Google Scholar PubMed PubMed Central
11. Ma, H.-Y., Gao, H.-Y., Sun, L., Huang, J., Xu, X.-M., Wu, L.-J. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J. Nat. Med. 2011, 65, 37–42, https://doi.org/10.1007/s11418-010-0453-2.Suche in Google Scholar PubMed
12. Zhou, Y., Li, W., Xu, L., Chen, L. Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ. Toxicol. Pharmacol. 2011, 31, 443–452, https://doi.org/10.1016/j.etap.2011.02.006.Suche in Google Scholar PubMed
13. Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241, https://doi.org/10.1007/s00214-007-0310-x.Suche in Google Scholar
14. Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785–789, https://doi.org/10.1103/physrevb.37.785.Suche in Google Scholar PubMed
15. Udoikono, A. D., Agwamba, E. C., Louis, H., Benjamin, I., Ahmad, I., Ejiofor, E. U., Chukwuemeka, K., Adeyinka, A. S., Patel, H. M., Manicum, A. L., Edim, M. Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation. J. Biomol. Struct. Dyn. 2022, 1–25, https://doi.org/10.1080/07391102.2022.2153414.Suche in Google Scholar PubMed
16. Dennington, R., Keith, T. A., Millam, J. M. GaussView 6.0; Semichem Inc.: Shawnee Mission, KS, USA, 2016.Suche in Google Scholar
17. HyperChem, T. HyperChem 8.07, HyperChem Professional Program; Hypercube: Gainesville, 2001.Suche in Google Scholar
18. Lu, T., Chen, F. Multiwfn A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592, https://doi.org/10.1002/jcc.22885.Suche in Google Scholar PubMed
19. Humphrey, W., Dalke, A., Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 4, 33–38.10.1016/0263-7855(96)00018-5Suche in Google Scholar PubMed
20. Escamilla-Ramírez, A., Castillo-Rodríguez, R.A., Zavala-Vega, S., Jimenez-Farfan, D., Anaya-Rubio, I., Briseño, E., Palencia, G., Guevara, P., Cruz-Salgado, A., Sotelo, J., Trejo-Solís, C. Autophagy as a potential therapy for malignant glioma. Pharmaceuticals. 2020, 13, 156.Suche in Google Scholar
21. Trott, O., Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461, https://doi.org/10.1002/jcc.21334.Suche in Google Scholar PubMed PubMed Central
22. Khayat, M. T., Zarka, M. A., El-Telbany, D. F. A., El-Halawany, A. M., Kutbi, H. I., Elkhatib, W. F., Noreddin, A. M., Khayyat, A. N., El-Telbany, R. F. A., Hammad, S. F., Abdel-Naim, A. B., Alolayan, E. M., Al-Sawahli, M. M. Intensification of resveratrol cytotoxicity, pro-apoptosis, oxidant potentials in human colorectal carcinoma HCT-116 cells using zein nanoparticles. Sci. Rep. 2022, 12, 1–13, https://doi.org/10.1038/s41598-022-18557-2.Suche in Google Scholar PubMed PubMed Central
23. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., Payne, M. C. Z. Kristallogr. 2005, 220, 567–570, https://doi.org/10.1524/zkri.220.5.567.65075.Suche in Google Scholar
24. Rad, A. S., Ardjmand, M., Esfahani, M. R., Khodashenas, B. DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119082, https://doi.org/10.1016/j.saa.2020.119082.Suche in Google Scholar PubMed PubMed Central
25. Kamel, M., Raissi, H., Morsali, A., Shahabi, M. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD a Maedeh. Appl. Surf. Sci. 2017.10.1016/j.apsusc.2017.10.165Suche in Google Scholar
26. Vatanparast, M., Shariatinia, Z. Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: insights from DFT calculations and molecular dynamics simulations. J. Mol. Graph. Model. 2019, 89, 50–59, https://doi.org/10.1016/j.jmgm.2019.02.012.Suche in Google Scholar PubMed
27. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Miroshnokova, A. V., Xiang, Z. Hydrogen bonds interactions in biuret-water clusters: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NLO analysis. J. King Saud Univ. Sci. 2022, 34, 102350. https://doi.org/10.1016/j.jksus.2022.102350.Suche in Google Scholar
28. Mujafarkani, N., Bassey, V., Tokono, J. J., Ahamed, A. J., Benjamin, I., Agurokpon, D. C., Louis, H. Synthesis, characterization, and molecular modeling of phenylenediamine-phenylhydrazine-formaldehyde terpolymer (PPHF) as potent anti-inflammatory agent. Heliyon 2023, 9, https://doi.org/10.1016/j.heliyon.2023.e18067.Suche in Google Scholar PubMed PubMed Central
29. Idante, P. S., Apebende, G. C., Louis, H., Benjamin, I., Undiandeye, U. J., Ikot, I. J. Spectroscopic, DFT study, and molecular docking investigation of N-(3-methylcyclohexyl)-2-phenylcyclopropane-1-carbohydrazide as a potential antimicrobial drug. J. Indian Chem. Soc. 2023, 100, 100806, https://doi.org/10.1016/j.jics.2022.100806.Suche in Google Scholar
30. Mohamed, M. A., Benjamin, I., Okon, G. A., Ahmad, I., Khan, S. A., Patel, H., Louis, H. Insights into in-vitro studies and molecular modelling of the antimicrobial efficiency of 4-chlorobenzaldehyde and 4-methoxybenzaldehyde derivatives. J. Biomol. Struct. Dyn. 2023, 1–23, https://doi.org/10.1080/07391102.2023.2239917.Suche in Google Scholar PubMed
31. Benjamin, I., Benson, C. U., Adalikwu, S. A., Nduoma, F. A., Akor, F. O., Odey, M. O., Anyambula, I. A., Odume, M. A., Louis, H. Investigating the potential of thiazolyl carbohydrazides derivatives as anti-Candida albicans agents: an intuition from molecular modelling, pharmacokinetic evaluation, and molecular docking analysis. Chem. Phys. Impact 2023, 7, 100275, https://doi.org/10.1016/j.chphi.2023.100275.Suche in Google Scholar
32. Adindu, E. A., Godfrey, O. C., Agwupuye, E. I., Ekpong, B. O., Agurokpon, D. C., Ogbodo, S. E., Louis, H. Structural analysis, reactivity descriptors (HOMO-LUMO, ELF, NBO), effect of polar (DMSO, EtOH, H2O) solvation, and libido-enhancing potential of resveratrol by molecular docking. Chem. Phys. Impact 2023, 7, 100296, https://doi.org/10.1016/j.chphi.2023.100296.Suche in Google Scholar
33. Utsu, P. M., Gber, T. E., Nwosa, D. O., Nwagu, A. D., Benjamin, I., Ikot, I. J., Louis, H. Modeling of anthranilhydrazide (HL1) salicylhydrazone and its copper complexes Cu (I) and Cu (II) as a potential antimicrobial and antituberculosis therapeutic candidate. Polycyclic Aromat. Compd. 2023, 1–19.10.1080/10406638.2023.2186444Suche in Google Scholar
34. Moherane, L., Louis, H., Ekereke, E. E., Agwamba, E. C., Visser, H. G., Benjamin, I., Manicum, A. L. E. Polypyridyl coordinated Re (I) complexes for human tenascin-C (TNC) as an antibreast cancer agent: an intuition from molecular modeling and simulations. Polycyclic Aromat. Compd. 2023, 1–17, https://doi.org/10.1080/10406638.2023.2189737.Suche in Google Scholar
35. Putz, M. V. Koopmans’ analysis of chemical hardness with spectral-like resolution. Sci. World J. 2013, 2013, https://doi.org/10.1155/2013/348415.Suche in Google Scholar PubMed PubMed Central
36. Manicum, A.-L. E., Louis, H., Mathias, G. E., Agwamba, E. C., Malan, F. P., Unimuke, T. O., Nzondomyo, W. J., Sithole, S. A., Biswas, S., Prince, S. Single crystal investigation, spectroscopic, DFT studies, and in-silico molecular docking of the anticancer activities of acetylacetone coordinated Re(I) tricarbonyl complexes. Inorgan. Chim. Acta 2023, 546, 121335, https://doi.org/10.1016/j.ica.2022.121335.Suche in Google Scholar
37. Ubah, C. B., Mujafarkani, N., Sundaravadivelu, A., Narendran, N., Godfrey, O. C., Ogbodo, S. E., Benjamin, I., Ahamed, A. J., Owen, A. E., Agbo, B. E., Louis, H. Derivative of aminoresin as potent anti-virulence agent: synthesis, spectral (FT-IR, UV, NMR) analysis, molecular docking, effect of polar solvation dynamics, and quantum chemical investigation. J. Mol. Struct. 2023, 136744, https://doi.org/10.1016/j.molstruc.2023.136744.Suche in Google Scholar
38. Parthiban, A., Sachithanandam, V., Lalitha, P., Elumalai, D., Asha, R. N., Jeyakumar, T. C., Muthukumaran, J., Jain, M., Jayabal, K., Mageswaran, T., Sridhar, R., Purvaja, R., Ramesh, R. Isolation and biological evaluation 7-hydroxy flavone from Avicennia officinalis L: insights from extensive in vitro, DFT, molecular docking and molecular dynamics simulation studies. J. Biomol. Struct. Dyn. 2022, 1–13, https://doi.org/10.1080/07391102.2022.2039771.Suche in Google Scholar PubMed
39. Doust Mohammadi, M., Abdullah, H. Y., Louis, H., Mathias, G. E. 2D boron nitride material as a sensor for H2SiCl2. Comput. Theor. Chem. 2022, 1213, https://doi.org/10.1016/j.comptc.2022.113742.Suche in Google Scholar
40. Ling, L., Louis, H., Isang, B. B., Emori, W., Benjamin, I., Ahuekwe, E. F., Manicum, A. L. E. Inflammatory studies of dehydroandrographolide: isolation, spectroscopy, biological activity, and theoretical modeling. Appl. Biochem. Biotechnol. 2023, 1–19, https://doi.org/10.1007/s12010-023-04566-y.Suche in Google Scholar PubMed
41. Agwamba, E. C., Benjamin, I., Louis, H., Udoikono, A. D., Igbalagh, A. T., Egemonye, T. G. C., Adeyinka, A. S. Antitubercolusic potential of amino-(formylphenyl) diazenyl-hydroxyl and nitro-substituted naphthalene-sulfonic acid derivatives: experimental and theoretical investigations. Chem. Africa 2022, 5, 1451–1467, https://doi.org/10.1007/s42250-022-00423-3.Suche in Google Scholar
42. Khaliq, F., Afzaal, A., Tabassum, S., Mahmood, T., Ayub, K., Khan, A. L., Yasin, M., Gilani, M. A. Surface functionalization of Si6Li6 cluster with superalkalis to achieve high nonlinear optical response: a DFT study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129985, https://doi.org/10.1016/j.colsurfa.2022.129985.Suche in Google Scholar
43. Ben Ahmed, A., Elleuch, N., Feki, H., Abid, Y., Minot, C. Vibrational spectra and non linear optical proprieties of l-histidine oxalate: DFT studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 554–561, https://doi.org/10.1016/j.saa.2011.03.033.Suche in Google Scholar PubMed
44. Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M. M., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., Eissa, I. H. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: in vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 27, 1–22, https://doi.org/10.3390/molecules27144606.Suche in Google Scholar PubMed PubMed Central
45. Chen, W., Wu, X., Li, T., Yan, X., Zhang, Y., Wang, X., Zhang, F., Zhang, S., He, G. Structural contribution of cationic groups to water sorption in anion exchange membranes: a combined DFT and MD simulation study. Chem. Eng. Sci. 2021, 244, 116791, https://doi.org/10.1016/j.ces.2021.116791.Suche in Google Scholar
46. Luo, Y., Ou, L., Chen, J., Zhang, G., Xia, Y., Zhu, B., Zhou, H. Hydration mechanisms of smithsonite from DFT-D calculations and MD simulations. Int. J. Min. Sci. Technol. 2022, 32, 605–613, https://doi.org/10.1016/j.ijmst.2022.01.009.Suche in Google Scholar
47. Singh, R., Prasad, D., Safi, Z., Wazzan, N., Guo, L. De-scaling, experimental, DFT, and MD-simulation studies of unwanted growing plant as natural corrosion inhibitor for SS-410 in acid medium. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129333, https://doi.org/10.1016/j.colsurfa.2022.129333.Suche in Google Scholar
48. Zhang, L., Guo, J., Xie, Z., Li, B., Liu, S. Micro-mechanism of improving low-rank coal flotation by using carboxylic acid collector: a DFT calculation and MD simulation study. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126696, https://doi.org/10.1016/j.colsurfa.2021.126696.Suche in Google Scholar
49. Chen, X., Chen, Y., Cui, J., Li, Y., Liang, Y., Cao, G. Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor. Comput. Mater. Sci. 2021, 188, 110229, https://doi.org/10.1016/j.commatsci.2020.110229.Suche in Google Scholar
50. Ejiofor, E. U., Ukpanukpong, R. U., Agwamba, E. C., Benjamin, I., Ahukwe, E. F., Maxwell, K. T., Louis, H. Reactivity and structural investigation of tetrahydroneoprzewaquinone a as an anti-inflammatory agent: an experimental and molecular modeling perspective. Polycyclic Aromat. Compd. 2023, 1–25.10.1080/10406638.2023.2257842Suche in Google Scholar
51. Ukpanukpong, R. U., Azubuike, A. E., Agwupuye, E. I., Ajen, M. U., Boco, H. M., Chukwuneke, C. P., Louis, H. Exploring the potential of compounds isolated from Laranthus micranthus for the treatment of benign prostatic hyperplasia: comprehensive studies on spectroscopic, reactivity, and biological activity. Chem. Afr. 2023, 1–17, https://doi.org/10.1007/s42250-023-00778-1.Suche in Google Scholar
52. Owen, A. E., Chima, C. M., Ahmad, I., Emori, W., Agwamba, E. C., Cheng, C. R., Louis, H. Antibacterial potential of trihydroxycyclohexa-2, 4-diene-1-carboxylic acid: insight from dft, molecular docking, and molecular dynamic simulation. Polycyclic Aromat. Compd. 2023, 1–24.10.1080/10406638.2023.2214280Suche in Google Scholar
53. Owen, A. E., Ime, E. I., Mbim, E. N., Edet, H. O., Benjamin, I., Iniama, G. I., Manicum, A. L. E., Louis, H. Exploring the anticancer potential of sulfate-hydroxy-butanone derivatives: insights from experimental and quantum chemical investigations. Z. Phys. Chem. 2023. 237, 1643–1668. https://doi.org/10.1515/zpch-2023-0307.Suche in Google Scholar
54. Sharma, M. G., Vala, R. M., Patel, D. M., Lagunes, I., Fernandes, M. X., Padrón, J. M., Gardas, R. L., Patel, H. M. Anti-proliferative 1, 4-dihydropyridine and pyridine derivatives synthesized through a catalyst-free, one-pot multi-component reaction. ChemistrySelect 2018, 3, 12163–12168, https://doi.org/10.1002/slct.201802537.Suche in Google Scholar
55. Vala, R. M., Tandon, V., Nicely, L. G., Guo, L., Gu, Y., Banerjee, S., Patel, H. M. Synthesis of N-(4-chlorophenyl) substituted pyrano [2, 3-c] pyrazoles enabling PKBβ/AKT2 inhibitory and in vitro anti-glioma activity. Ann. Med. 2022, 54, 2548–2560, https://doi.org/10.1080/07853890.2022.2123559.Suche in Google Scholar PubMed PubMed Central
56. Patel, H. M., Rajani, D. P., Sharma, M. G., Bhatt, H. G. Synthesis, molecular docking and biological evaluation of mannich products based on thiophene nucleus using ionic liquid. Lett. Drug Des. Discov. 2019, 16, 119–126, https://doi.org/10.2174/1570180815666180502123743.Suche in Google Scholar
57. Arthurs, C., Murtaza, B. N., Thomson, C., Dickens, K., Henrique, R., Patel, H. R., Millar, M., Thrasivoulou, C., Ahmed, A. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS One 2017, 12, e0186047, https://doi.org/10.1371/journal.pone.0186047.Suche in Google Scholar PubMed PubMed Central
58. Santos, P. B., Patel, H., Henrique, R., Félix, A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J. Clin. Oncol. 2020, 11, 43, https://doi.org/10.5306/wjco.v11.i2.43.Suche in Google Scholar PubMed PubMed Central
59. Patel, H. R., Mould, T., Joseph, J. V., Delaney, C. P., Eds. Pelvic Cancer Surgery: Modern Breakthroughs and Future Advances; Springer, 2015.10.1007/978-1-4471-4258-4Suche in Google Scholar
60. Bargão Santos, P., Patel, H. R. Prostate stem cell antigen–novel biomarker and therapeutic target? Expet. Rev. Anticancer Ther. 2014, 14, 5–7, https://doi.org/10.1586/14737140.2014.870481.Suche in Google Scholar PubMed
61. Bassey, V. M., Godfrey, O. C., Benjamin, I., Okoro, C. U., Shagal, M. H., Emori, W., Edeghor, U. O., Runde, M., Godwin, J., Mbahi, M. A., Louis, H. Elucidating the efficacy of plant-derived triterpenoids for treating urinary tract infections: insights from experimental investigation, quantum chemical analysis, and molecular docking. Z. Phys. Chem. 2023. 237, 1617–1641. https://doi.org/10.1515/zpch-2023-0305.Suche in Google Scholar
62. Cheng, C. R., Edet, U. O., Benjamin, I., Okoro, C. U., Emori, W., Mbim, E. N., Nwaokorie, F. O., Mbah, J. O., Ukpanukpong, R. U., Manicum, A. L. E., Louis, H. Effect of solvation on the molecular structure, vibrational assignment, nature of bonding, and the antiviral drug-like potential of troxerutin against HBV proteins. J. Indian Chem. Soc. 2023, 100, 100994, https://doi.org/10.1016/j.jics.2023.100994.Suche in Google Scholar
63. Jomaa, I., Issaoui, N., Roisnel, T., Marouani, H. Insight into non-covalent interactions in a tetrachlorocadmate salt with promising NLO properties: experimental and computational analysis. J. Mol. Struct. 2021, 1242, 130730. https://doi.org/10.1016/j.molstruc.2021.130730.Suche in Google Scholar
64. Ramalingam, A., Sambandam, S., Medimagh, M., Al-Dossary, O., Issaoui, N., Wojcik, M. J. Study of a new piperidone as an anti-Alzheimer agent: molecular docking, electronic and intermolecular interaction investigations by DFT method. J. King Saud Univ. Sci. 2021, 33, 101632. https://doi.org/10.1016/j.jksus.2021.101632.Suche in Google Scholar
65. Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Non covalent interactions and molecular docking studies on morphine compound. J. King Saud Univ. Sci. 2021, 33, 101606. https://doi.org/10.1016/j.jksus.2021.101606.Suche in Google Scholar
66. Muthu, S., Prasana, J. C., Abraham, C. S., Raja, M. Spectroscopic (FT-IR, FT-Raman) investigation, topology (ESP, ELF, LOL) analyses, charge transfer excitation and molecular docking (dengue, HCV) studies on ribavirin. Chem. Data Collect. 2018, 17, 236–250, https://doi.org/10.1016/j.cdc.2018.09.003.Suche in Google Scholar
67. Janani, S., Rajagopal, H., Muthu, S., Aayisha, S., Raja, M. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR), HOMO-LUMO, chemical reactivity, AIM, ELF, LOL and molecular docking studies on 1-Benzyl-4-(N-Boc-amino) piperidine. J. Mol. Struct. 2021, 1230, 129657, https://doi.org/10.1016/j.molstruc.2020.129657.Suche in Google Scholar
68. Manjusha, P., Prasana, J. C., Muthu, S., Rizwana, B. F. Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: an antiprotozoal agent. Comput. Biol. Chem. 2020, 88, 107330, https://doi.org/10.1016/j.compbiolchem.2020.107330.Suche in Google Scholar PubMed
69. Benjamin, I., Udoikono, A. D., Louis, H., Agwamba, E. C., Unimuke, T. O., Owen, A. E., Adeyinka, A. S. Antimalarial potential of naphthalene-sulfonic acid derivatives: molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. J. Mol. Struct. 2022, 1264, 133298, https://doi.org/10.1016/j.molstruc.2022.133298.Suche in Google Scholar
70. van Waarde, A., Rybczynska, A. A., Ramakrishnan, N. K., Ishiwata, K., Elsinga, P. H., Dierckx, R. A. J. O. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim. Biophys. Acta - Biomembr. 2015, 1848, 2703–2714, https://doi.org/10.1016/j.bbamem.2014.08.022.Suche in Google Scholar PubMed
71. Wang, C., Aguilar, A., Ojima, I. Strategies for the drug discovery and development of taxane anticancer therapeutics. Expert Opin. Drug Discov. 2022, 17, 1193–1207, https://doi.org/10.1080/17460441.2022.2131766.Suche in Google Scholar PubMed
72. Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., Tang, Y. ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. Med. Chem. Comm. 2019, 10, 148–157, https://doi.org/10.1039/c8md00472b.Suche in Google Scholar PubMed PubMed Central
73. Alcerzak, M. B. Sample digestion methods for the determination of traces of precious metals by spectrometric techniques. Anal. Sci. 2002, 18, https://doi.org/10.2116/analsci.18.737.Suche in Google Scholar PubMed
74. Benjamin, I., Louis, H., Ekpen, F. O., Gber, T. E., Gideon, M. E., Ahmad, I., Unimuke, T. O., Akanimo, N. P., Patel, H., Eko, I. J., Simon, O., Agwamba, E. C., Ejiofor, E. U. Modeling the anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of (E)-6-chloro-N2-phenyl-N4-(4-phenyl-5-(phenyl diazinyl)-2λ3, 3 λ2-thiazol-2-yl)-1, 3, 5-triazine-2,4-diamine. Polycycl. Aromat. Compd. 2023, 43, 7942–7969.10.1080/10406638.2022.2160773Suche in Google Scholar
75. Asogwa, F. C., Izuchukwu, U. D., Louis, H., Eze, C. C., Ekeleme, C. M., Ezugwu, J. A., Attah, S. I., Agwamba, E. C., Ekoh, O. C., Adeyinka, A. S. Synthesis, characterization and theoretical investigations on the molecular structure, electronic property and anti-trypanosomal activity of benzenesulphonamide-based carboxamide and its derivatives. Polycyclic Aromat. Compd. 2022, 1–20, https://doi.org/10.1080/10406638.2022.2150653.Suche in Google Scholar
76. Escamilla-Ramírez, A., Castillo-Rodríguez, R. A., Zavala-Vega, S., Jimenez-Farfan, D., Anaya-Rubio, I., Briseño, E., Palencia, G., Guevara, P., Cruz-Salgado, A., Sotelo, J., Trejo-Solís, C. Autophagy as a potential therapy for malignant glioma. Pharmaceuticals 2020, 13, 156, https://doi.org/10.3390/ph13070156.Suche in Google Scholar PubMed PubMed Central
77. Liu, A., Guan, W., Zhao, X., Ren, X., Liang, X., Gao, L., Li, Y., Ma, T. Investigation on the interfacial behavior of polyorganic inhibitors on a metal surface by DFT study and MD simulation. Appl. Surf. Sci. 2021, 541, 148570, https://doi.org/10.1016/j.apsusc.2020.148570.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal implementation with Zirconia: synthesis, characterization and investigation of biocidal activity of Ag/ZrO2 nanocomposites
- Quantum mechanical investigation of the mechanism of Ni(0)-catalyzed cycloaddition reaction of 2-cyclobutanone with alkyne
- Effect of reducing agents on structural, morphological, optical and electrochemical properties of Mn2O3 nanoparticles by co-precipitation method
- New Pd(II) complexes containing hydrazinyl oxazolyl coumarin derivatives: synthesis, spectral characterization and anti-cancer studies
- A baseline study of temporal and spatial variations of physico-chemical variables in Vellar estuary Parangipettai southeast of India
- Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies
- Anticorrosion studies of 5-acetyl-4-(3-methoxyphenyl)-6-methyl-1-phenyl-3,4-dihydropyrimidin-2(1H)-one: approach from experimental, DFT studies, and MD simulation
- Synergistic mixture of Capsicum annuum fruit extract/KI as an efficient inhibitor for the corrosion of P110 steel in 15 % HCl solution under hydrodynamic condition
- Molecular structure, spectroscopy, molecular docking, and molecular dynamic studies of tetrahydroneoprzewaquinone as potent cervical cancer agent
- Exploring non-covalent interactions between caffeine and ascorbic acid: their significance in the physical chemistry of drug efficacy
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Hydrothermal implementation with Zirconia: synthesis, characterization and investigation of biocidal activity of Ag/ZrO2 nanocomposites
- Quantum mechanical investigation of the mechanism of Ni(0)-catalyzed cycloaddition reaction of 2-cyclobutanone with alkyne
- Effect of reducing agents on structural, morphological, optical and electrochemical properties of Mn2O3 nanoparticles by co-precipitation method
- New Pd(II) complexes containing hydrazinyl oxazolyl coumarin derivatives: synthesis, spectral characterization and anti-cancer studies
- A baseline study of temporal and spatial variations of physico-chemical variables in Vellar estuary Parangipettai southeast of India
- Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies
- Anticorrosion studies of 5-acetyl-4-(3-methoxyphenyl)-6-methyl-1-phenyl-3,4-dihydropyrimidin-2(1H)-one: approach from experimental, DFT studies, and MD simulation
- Synergistic mixture of Capsicum annuum fruit extract/KI as an efficient inhibitor for the corrosion of P110 steel in 15 % HCl solution under hydrodynamic condition
- Molecular structure, spectroscopy, molecular docking, and molecular dynamic studies of tetrahydroneoprzewaquinone as potent cervical cancer agent
- Exploring non-covalent interactions between caffeine and ascorbic acid: their significance in the physical chemistry of drug efficacy