Startseite Naturwissenschaften Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies

  • Shahab Khan ORCID logo EMAIL logo , Mudassir Rahman , Hadi M. Marwani , Raed H. Althomali und Mohammed M. Rahman EMAIL logo
Veröffentlicht/Copyright: 28. November 2023

Abstract

In this research work, bicomponent structures of salicylic acid were synthesized by reflux condition. The cofomers used were 1-10-phenanthroline, 5-chlorobenzotiazole, and 2-amino-5-methylpyridine. The yield of resultant crystals was calculated at about 60–70 %. It was concluded that bicomponent polymorphs 1–3 were formed by treating salicylic acid (SA) with 10-phenathroline (1-10-Phen), 5-chlorobenzotiazole (5-ClB), and 2-amino-5-methylpyridine (2A-5M-P) respectively. The intermolecular interactions were further confirmed by their computational studies. Molecular docking revealed that the binding nature of salicylic acid can be tuned upon cocrystallization or molecular salt formulation. Antioxidant and antibacterial activities (against Gram-positive and Gram-negative bacteria) were also performed in this study. The MP, and FT-IR, were used for the structure elucidation.


Corresponding authors: Shahab Khan, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P.R. China; and Department of Chemistry, University of Malakand, Malakand, KPK, Pakistan, E-mail: ; and Mohammed M. Rahman, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; and Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia, E-mail:

Award Identifier / Grant number: PSAU/2023/R/1444

  1. Research ethics: The author and ethical statements in their default format are a requirement for submission to De Gruyter Journals. Statements are to be customized as described below and submitted alongside with manuscript.

  2. Author contributions: Mr. Shahab Khan performed experimental work, synthesized all polymorphs, performed their DFT calculations, intermolecular interaction simulation, wrote initial drafting, and revised and finalization of manuscript. Mr. Mudassir Ur Rahman performed FT-IR and antibacterial activities. Dr. Hadi M. Marwani performed the docking studies, Dr. Raed H. Althomali performed theoretical calculation and simulation, and Dr. Mohammed M. Rahman revised the manuscript, verified the integrity and scope of work improved the language proficiency and finalized the manuscript.

  3. Competing interests: Not applicable.

  4. Research funding: This work was supported by Prince Sattam bin Abdul Aziz University (https://doi.org/10.13039/100009392, PSAU/2023/R/1444).

  5. Data availability: Not applicable.

References

1. Vioglio, P. C., Chierotti, M. R., Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 2017, 117, 86–110; https://doi.org/10.1016/j.addr.2017.07.001.Suche in Google Scholar PubMed

2. Kavanagh, O. N., Croker, D. M., Walker, G. M., Zaworotko, M. J. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today 2019, 24, 796–804; https://doi.org/10.1016/j.drudis.2018.11.023.Suche in Google Scholar PubMed

3. Bordignon, S., Cerreia Vioglio, P., Priola, E., Voinovich, D., Gobetto, R., Nishiyama, Y., Chierotti, M. R. Engineering codrug solid forms: mechanochemical synthesis of an indomethacin–caffeine system. Cryst. Growth Des. 2017, 17, 5744–5752; https://doi.org/10.1021/acs.cgd.7b00748.Suche in Google Scholar

4. Sathisaran, I., Dalvi, S. V. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics 2018, 10, 108; https://doi.org/10.3390/pharmaceutics10030108.Suche in Google Scholar PubMed PubMed Central

5. Good, D. J., Rodriguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 2009, 9, 2252–2264; https://doi.org/10.1021/cg801039j.Suche in Google Scholar

6. Elder, D. P., Holm, R., De Diego, H. L. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int. J. Pharm. 2013, 453, 88–100; https://doi.org/10.1016/j.ijpharm.2012.11.028.Suche in Google Scholar PubMed

7. Khan, S., Ajmal, S., Hussain, T., Rahman, M. U. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 1–8; https://doi.org/10.1007/s43994-023-00083-0.Suche in Google Scholar

8. Hathwar, V. R., Pal, R., Guru Row, T. Charge density analysis of crystals of nicotinamide with salicylic acid and oxalic acid: an insight into the salt to cocrystal continuum. Cryst. Growth Des. 2010, 10, 3306–3310; https://doi.org/10.1021/cg100457r.Suche in Google Scholar

9. Perumalla, S. R., Wang, C., Guo, Y., Shi, L., Sun, C. C. Robust bulk preparation and characterization of sulfamethazine and saccharine salt and cocrystal polymorphs. CrystEngComm 2019, 21, 2089–2096; https://doi.org/10.1039/c8ce01076e.Suche in Google Scholar

10. Losev, E., Boldyreva, E. A salt or a co-crystal–when crystallization protocol matters. CrystEngComm 2018, 20, 2299–2305; https://doi.org/10.1039/c7ce02204b.Suche in Google Scholar

11. Stainton, P., Grecu, T., McCabe, J., Munshi, T., Nauha, E., Scowen, I. J., Blagden, N. First comparative study of the three polymorphs of bis (isonicotinamide) citric acid cocrystals and the concomitant salt 4-carbamoylpyridinium citrate isonicotinamide. Cryst. Growth Des. 2018, 18, 4150–4159; https://doi.org/10.1021/acs.cgd.8b00597.Suche in Google Scholar

12. Jones, C. L., Skelton, J. M., Parker, S. C., Raithby, P. R., Walsh, A., Wilson, C. C., Thomas, L. H. Living in the salt-cocrystal continuum: indecisive organic complexes with thermochromic behaviour. CrystEngComm 2019, 21, 1626–1634; https://doi.org/10.1039/c8ce02066c.Suche in Google Scholar

13. Spinelli, F., Dichiarante, E., Curzi, M., Giaffreda, S. L., Chierotti, M. R., Gobetto, R., Rossi, F., Chelazzi, L., Braga, D., Grepioni, F. Molecular salts of the antidepressant venlafaxine: an effective route to solubility properties modifications. Cryst. Growth Des. 2017, 17, 4270–4279; https://doi.org/10.1021/acs.cgd.7b00606.Suche in Google Scholar

14. Surov, A. O., Vasilev, N. A., Churakov, A. V., Stroh, J., Emmerling, F., Perlovich, G. L. Solid forms of ciprofloxacin salicylate: polymorphism, formation pathways, and thermodynamic stability. Cryst. Growth Des. 2019, 19, 2979–2990; https://doi.org/10.1021/acs.cgd.9b00185.Suche in Google Scholar

15. Bernasconi, D., Bordignon, S., Rossi, F., Priola, E., Nervi, C., Gobetto, R., Voinovich, D., Hasa, D., Duong, N. T., Nishiyama, Y. Selective synthesis of a salt and a cocrystal of the ethionamide–salicylic acid system. Cryst. Growth Des. 2019, 20, 906–915; https://doi.org/10.1021/acs.cgd.9b01299.Suche in Google Scholar

16. McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L., Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Z. Kristallogr. 2005, 220, 340–350; https://doi.org/10.1524/zkri.220.4.340.61624.Suche in Google Scholar

17. Lemmerer, A. Covalent assistance to supramolecular synthesis: modifying the drug functionality of the antituberculosis API isoniazid in situ during co-crystallization with GRAS and API compounds. CrystEngComm 2012, 14, 2465–2478; https://doi.org/10.1039/c1ce06310c.Suche in Google Scholar

18. Tothadi, S. Polymorphism in cocrystals of urea: 4, 4′-bipyridine and salicylic acid: 4, 4′-bipyridine. CrystEngComm 2014, 16, 7587–7597; https://doi.org/10.1039/c4ce00866a.Suche in Google Scholar

19. Caira, M. R., Bourne, S. A., Samsodien, H., Engel, E., Liebenberg, W., Stieger, N., Aucamp, M. Co-crystals of the antiretroviral nevirapine: crystal structures, thermal analysis and dissolution behaviour. CrystEngComm 2012, 14, 2541–2551; https://doi.org/10.1039/c2ce06507j.Suche in Google Scholar

20. Jebamony, J., Thomas Muthiah, P. 8-Hydroxyquinolinium–salicylate–salicylic acid (1/1/1) complex, C9H8NO+. C7H5O3−. C7H6O3. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1998, 54, 539–540; https://doi.org/10.1107/s0108270197013930.Suche in Google Scholar

21. Wang, L., Zhao, L., Xue, R., Lu, X., Wen, Y., Yang, Y. Construction of interesting organic supramolecular structures with synthons cooperation in the cocrystals of 1H-benzotriazole and hydroxybenzoic acids. Sci. China Chem. 2012, 55, 2515–2522; https://doi.org/10.1007/s11426-012-4652-4.Suche in Google Scholar

22. Kastelic, J., Lah, N., Kikelj, D., Leban, I. A 1:1 cocrystal of fluconazole with salicylic acid. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2011, 67, o370–o372; https://doi.org/10.1107/s0108270111031155.Suche in Google Scholar

23. López, C., Claramunt, R. M., García, M. Á., Pinilla, E., Torres, M. R., Alkorta, I., Elguero, J. Cocrystals of 3, 5-dimethyl-1 H-pyrazole and salicylic acid: controlled formation of trimers via O–H⋯N hydrogen bonds. Cryst. Growth Des. 2007, 7, 1176–1184; https://doi.org/10.1021/cg0701527.Suche in Google Scholar

24. Tier, A. Z., Wust, K. M., Vieira, J. C., Sardo, M., Čendak, T., Mafra, L., Rocha, J., Gindri, I. M., Hörner, M., Frizzo, C. P. Nature of the multicomponent crystal of salicylic acid and 1, 2-phenylenediamine. CrystEngComm 2020, 22, 708–719; https://doi.org/10.1039/c9ce01650c.Suche in Google Scholar

25. Weenawan, S., Khumponkrung, S., Haller, K. J. Theophylline cocrystallized with salicylic acid and picolinic acid: preparation and physical properties. Adv. Mater. Res. 2013, 699, 682–688; https://doi.org/10.4028/www.scientific.net/AMR.699.682.Suche in Google Scholar

26. Zhang, S., Chen, H., Rasmuson, Å. C. Thermodynamics and crystallization of a theophylline–salicylic acid cocrystal. CrystEngComm 2015, 17, 4125–4135; https://doi.org/10.1039/c5ce00240k.Suche in Google Scholar

27. Lu, E., Rodríguez-Hornedo, N., Suryanarayanan, R. A rapid thermal method for cocrystal screening. CrystEngComm 2008, 10, 665–668; https://doi.org/10.1039/b801713c.Suche in Google Scholar

28. Bucar, D.-K., Henry, R. F., Lou, X., Duerst, R. W., MacGillivray, L. R., Zhang, G. G. Cocrystals of caffeine and hydroxybenzoic acids composed of multiple supramolecular heterosynthons: screening via solution-mediated phase transformation and structural characterization. Cryst. Growth Des. 2009, 9, 1932–1943; https://doi.org/10.1021/cg801178m.Suche in Google Scholar

29. Tothadi, S., Bhogala, B. R., Gorantla, A. R., Thakur, T. S., Jetti, R. K., Desiraju, G. R. Triclabendazole: an intriguing case of co-existence of conformational and tautomeric polymorphism. Chem. – Asian J. 2012, 7, 330–342; https://doi.org/10.1002/asia.201100638.Suche in Google Scholar PubMed

30. Skovsgaard, S., Bond, A. D. Co-crystallisation of benzoic acid derivatives with N-containing bases in solution and by mechanical grinding: stoichiometric variants, polymorphism and twinning. CrystEngComm 2009, 11, 444–453; https://doi.org/10.1039/b810660f.Suche in Google Scholar

31. Luo, Y.-H., Zhang, C.-G., Xu, B., Sun, B.-W. A cocrystal strategy for the precipitation of liquid 2, 3-dimethyl pyrazine with hydroxyl substituted benzoic acid and a Hirshfeld surfaces analysis of them. CrystEngComm 2012, 14, 6860–6868; https://doi.org/10.1039/c2ce25767j.Suche in Google Scholar

32. Patel, U., Haridas, M., Singh, T. Structure of the 1:1 complex between 4-amino-N-(4, 6-dimethyl-2-pyrimidinyl) benzenesulfonamide (sulfadimidine) and 2-hydroxybenzoic acid (salicylic acid). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1988, 44, 1264–1267; https://doi.org/10.1107/s0108270188003579.Suche in Google Scholar

33. Jin, S., Zhang, J., Wang, D., Tao, L., Zhou, M., Shen, Y., Chen, Q., Lin, Z., Gao, X. Structure of six organic acid–base adducts from 6-bromobenzo [d] thiazol-2-amine and acidic compounds. J. Mol. Struct. 2014, 1065, 223–234; https://doi.org/10.1016/j.molstruc.2014.02.064.Suche in Google Scholar

34. De Vries, E. J., Kantengwa, S., Ayamine, A., Báthori, N. B. Testing the limits of synthon engineering: salts of salicylic and sulfosalicylic acid with nucleobases and derivatives. CrystEngComm 2016, 18, 7573–7579; https://doi.org/10.1039/c6ce01534d.Suche in Google Scholar

35. Zhou, Z., Chan, H. M., Sung, H. H.-Y., Tong, H. H., Zheng, Y. Identification of new cocrystal systems with stoichiometric diversity of salicylic acid using thermal methods. Pharmaceut. Res. 2016, 33, 1030–1039; https://doi.org/10.1007/s11095-015-1849-1.Suche in Google Scholar PubMed

36. Cheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L., Zaworotko, M. J. Supramolecular architectures of meloxicam carboxylic acid cocrystals, a crystal engineering case study. Cryst. Growth Des. 2010, 10, 4401–4413; https://doi.org/10.1021/cg100514g.Suche in Google Scholar

37. Suresh, K., Goud, N. R., Nangia, A. Andrographolide: solving chemical instability and poor solubility by means of cocrystals. Chem. – Asian J. 2013, 8, 3032–3041; https://doi.org/10.1002/asia.201300859.Suche in Google Scholar PubMed

38. Singh, T., Vijayan, M. Structural studies of analgesics and their interactions. II. The crystal structure of a 1:1 complex between antipyrine and salicyclic acid (salipyrine). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 557–562; https://doi.org/10.1107/s056774087400330x.Suche in Google Scholar

39. Pernak, J., Świerczyńska, A., Kot, M., Walkiewicz, F., Maciejewski, H. Pyrylium sulfonate based ionic liquids. Tetrahedron Lett. 2011, 52, 4342–4345; https://doi.org/10.1016/j.tetlet.2011.06.058.Suche in Google Scholar

40. Bartoszak-Adamska, E., Dega-Szafran, Z., Krociak, M., Jaskolski, M., Szafran, M. Hydrogen bonds in 1:1 complex of piperidine-3-carboxylic acid with salicylic acid. J. Mol. Struct. 2009, 920, 68–74; https://doi.org/10.1016/j.molstruc.2008.10.022.Suche in Google Scholar

41. Limmatvapirat, S., Yamaguchi, K., Yonemochi, E., Oguchi, T., Yamamoto, K. A 1:1 deoxycholic acid–salicylic acid complex. Acta Crystallogr. C Struct. Chem. 1997, 53, 803–805; https://doi.org/10.1107/s0108270197000899.Suche in Google Scholar

42. Takata, N., Shiraki, K., Takano, R., Hayashi, Y., Terada, K. Cocrystal screening of stanolone and mestanolone using slurry crystallization. Cryst. Growth Des. 2008, 8, 3032–3037; https://doi.org/10.1021/cg800156k.Suche in Google Scholar

43. Fonari, M. S., Ganin, E. V., Basok, S. S., Lyssenko, K. A., Zaworotko, M. J., Kravtsov, V. C. Structural study of salicylic acid salts of a series of azacycles and azacrown ethers. Cryst. Growth Des. 2010, 10, 5210–5220; https://doi.org/10.1021/cg101002x.Suche in Google Scholar

44. Chan, H. S., Woollam, G. R., Wagner, T., Schmidt, M. U., Lewis, R. A. Can picolinamide be a promising cocrystal former? CrystEngComm 2014, 16, 4365–4368; https://doi.org/10.1039/c4ce00265b.Suche in Google Scholar

45. Elbagerma, M., Edwards, H., Munshi, T., Scowen, I. J. Identification of a new co-crystal of salicylic acid and benzamide of pharmaceutical relevance. Anal. Bioanal. Chem. 2010, 397, 137–146; https://doi.org/10.1007/s00216-009-3375-7.Suche in Google Scholar PubMed

46. Emsley, J., Reza, N. M., Kuroda, R. Hydrogen bonding of urea-salicylic acid, U· SA. J. Crystallogr. Spectrosc. Res. 1986, 16, 57–69; https://doi.org/10.1007/bf01566046.Suche in Google Scholar

47. Babu, N. J., Sanphui, P., Nangia, A. Crystal engineering of stable temozolomide cocrystals. Chem. – Asian J. 2012, 7, 2274–2285; https://doi.org/10.1002/asia.201200205.Suche in Google Scholar PubMed

48. Aitipamula, S., Wong, A. B., Chow, P. S., Tan, R. B. Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. CrystEngComm 2012, 14, 8515–8524; https://doi.org/10.1039/c2ce26325d.Suche in Google Scholar

49. Babu, N. J., Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des. 2011, 11, 2662–2679; https://doi.org/10.1021/cg200492w.Suche in Google Scholar

50. Perumalla, S. R., Suresh, E., Pedireddi, V. R. Nucleobases in molecular recognition: molecular adducts of adenine and cytosine with COOH functional groups. Angew. Chem. Int. Ed. 2005, 44, 7752–7757; https://doi.org/10.1002/anie.200502434.Suche in Google Scholar PubMed

51. Desiraju, G. R. Cover picture: crystal engineering: a holistic view (Angew. Chem. Int. Ed. 44/2007). Angew. Chem. Int. Ed. 2007, 46, 8305; https://doi.org/10.1002/anie.200790222.Suche in Google Scholar

52. Gul, Z., Salman, M., Khan, S., Shehzad, A., Ullah, H., Irshad, M., Zeeshan, M., Batool, S., Ahmed, M., Altaf, A. A. Single organic ligands act as a bifunctional sensor for subsequent detection of metal and cyanide ions, a statistical approach toward coordination and sensitivity. Crit. Rev. Anal. Chem. 2023, 53, 1–17; https://doi.org/10.1080/10408347.2023.2186165.Suche in Google Scholar PubMed

53. Shahab Khan, F. U. R., Zahoor, M., Haq, A. U., Shah, A. B., Rahman, M. U., Rahman, H. U. The DNA threat probing of some chromophores using UV/VIS spectroscopy. World J. Biol. Biotechnol. 2023, 8, 19–22; https://doi.org/10.33865/wjb.008.02.0962.Suche in Google Scholar

54. Khan, S., Zahoor, M., Rahman, M. U., Gul, Z. Cocrystals; basic concepts, properties and formation strategies. Z. Phys. Chem. 2023, 237, 273–332; https://doi.org/10.1515/zpch-2022-0175.Suche in Google Scholar

55. Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219.Suche in Google Scholar

56. Turner, M. J., McKinnon, J. J., Jayatilaka, D., Spackman, M. A. Visualisation and characterisation of voids in crystalline materials. CrystEngComm 2011, 13, 1804–1813; https://doi.org/10.1039/c0ce00683a.Suche in Google Scholar

57. Hennig, M., Schlesier, B., Dauter, Z., Pfeffer, S., Betzel, C., Höhne, W. E., Wilson, K. S. A TIM barrel protein without enzymatic activity? Crystal-structure of narbonin at 1.8 Å resolution. FEBS Lett. 1992, 306, 80–84; https://doi.org/10.1016/0014-5793(92)80842-5.Suche in Google Scholar PubMed

58. Cuff, A. L., Martin, A. C. Analysis of void volumes in proteins and application to stability of the p53 tumour suppressor protein. J. Mol. Biol. 2004, 344, 1199–1209; https://doi.org/10.1016/j.jmb.2004.10.015.Suche in Google Scholar PubMed

59. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293; https://doi.org/10.1038/s41586-020-2223-y.Suche in Google Scholar PubMed

Received: 2023-10-05
Accepted: 2023-11-13
Published Online: 2023-11-28
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0378/html
Button zum nach oben scrollen