Abstract
Ti-based materials exhibit suitable properties for usage in secondary Li- and Na-ion batteries and were in the focus of several electrochemical and ion conductivity studies. A material of such interest is layer-structured, monoclinic Na2Ti3O7. Additionally, the sodium in Na2Ti3O7 can be replaced completely with lithium to achieve monoclinic Li2Ti3O7, whose electrochemical properties were already investigated as well. Both materials exhibit interesting properties such as zero-strain behavior upon intercalation and high cycling stability. However, there is still a lack of fundamental understanding of the ion diffusivity of both Na and Li in the corresponding host structure. Solid-state nuclear magnetic resonance (NMR) spectroscopy is used here for the first time to reveal the cation dynamics in layered Na2Ti3O7 and Li2Ti3O7. This includes activation energies for the ionic motion and jump rates on the microscopic scale from NMR spin-lattice relaxation (SLR), spin-alignment echo (SAE), and 2D NMR exchange techniques. Moreover, the dimensionality of the ionic motion is investigated by frequency-dependent NMR SLR. Structural details are studied using magic-angle spinning (MAS) NMR spectroscopy. Results for the electric field gradient at the Na and Li site, respectively, are compared with those from theoretical calculations performed within this study. The dynamics are similar for both cations, and the frequency-dependence of the 7Li NMR SLR rate indicates Li motion confined to two dimensions. Thus, these two materials may be regarded a model system for low-dimensional diffusion of two different cations.
Acknowledgement
We thank Prof. Feldhoff for access to the scanning electron microscope and Dr. Licht for carrying out the measurements at the SEM. Financial support by the DFG in the frame of the Research Unit FOR 1277 (molife) is gratefully acknowledged.
References
1. Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, J. Power Sources 192 (2009) 588.10.1016/j.jpowsour.2009.02.038Suche in Google Scholar
2. G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Energy Environ. Sci. 5 (2012) 6652.10.1039/c2ee03410gSuche in Google Scholar
3. W. Küchler, P. Heitjans, A. Payer, R. Schöllhorn, Solid State Ionics 70–71 (1994) 434.10.1016/0167-2738(94)90350-6Suche in Google Scholar
4. R. Winter, P. Heitjans, J. Non-Cryst. Solids 293–295 (2001) 19.10.1016/S0022-3093(01)00640-8Suche in Google Scholar
5. R. Winter, P. Heitjans, J. Phys. Chem. B 105 (2001) 6108.10.1021/jp011200fSuche in Google Scholar
6. T. Bredow, P. Heitjans, M. Wilkening, Phys. Rev. B 70 (2004) 115111.10.1103/PhysRevB.70.115111Suche in Google Scholar
7. M. Wilkening, P. Heitjans, Phys. Rev. B 77 (2008) 24311.10.1103/PhysRevB.77.024311Suche in Google Scholar
8. M. M. Islam, T. Bredow, Z. Phys. Chem. 229 (2015) 1265.10.1515/zpch-2014-0663Suche in Google Scholar
9. R. Knobel, H. Behrens, N. I. Schwarzburger, M. Binnewies, I. Horn, Z. Phys. Chem. 229 (2015) 1289.10.1515/zpch-2014-0662Suche in Google Scholar
10. D. Wiedemann, M. M. Islam, S. Nakhal, A. Senyshyn, T. Bredow, M. Lerch, J. Phys. Chem. C 119 (2015) 11370.10.1021/acs.jpcc.5b01166Suche in Google Scholar
11. C. V. Chandran, P. Heitjans, in: G. A. Webb (Ed.): Annual reports on NMR spectroscopy, Academic Press, Amsterdam (2016), P. 1.10.1016/bs.arnmr.2016.03.001Suche in Google Scholar
12. M. Wilkening, W. Iwaniak, J. Heine, V. Epp, A. Kleinert, M. Behrens, G. Nuspl, W. Bensch, P. Heitjans, Phys. Chem. Chem. Phys. 9 (2007) 6199.10.1039/b713311aSuche in Google Scholar
13. M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Phys. Chem. Chem. Phys. 9 (2007) 1239.10.1039/B616269JSuche in Google Scholar
14. M. Wilkening, J. Heine, C. Lyness, A. Armstrong, P. Bruce, Phys. Rev. B 80 (2009).10.1103/PhysRevB.80.064302Suche in Google Scholar
15. W. Iwaniak, J. Fritzsche, M. Zukalová, R. Winter, M. Wilkening, P. Heitjans, Def. Diff. Forum 289–292 (2009) 595.10.4028/www.scientific.net/DDF.289-292.565Suche in Google Scholar
16. L. Wu, D. Buchholz, D. Bresser, L. Gomes Chagas, S. Passerini, J Power Sources 251 (2014) 379.10.1016/j.jpowsour.2013.11.083Suche in Google Scholar
17. W. Schmidt, P. Bottke, M. Sternad, P. Gollob, V. Hennige, M. Wilkening, Chem. Mater. 27 (2015) 1740.10.1021/cm504564kSuche in Google Scholar
18. S. Kikkawa, F. Yasuda, M. Koizumi, Mater. Res. Bull. 20 (1985) 1221.10.1016/0025-5408(85)90096-0Suche in Google Scholar
19. A.-L. Sauvet, S. Baliteau, C. Lopez, P. Fabry, J. Solid State Chem. 177 (2004) 4508.10.1016/j.jssc.2004.09.008Suche in Google Scholar
20. M. Holzinger, A. Benisek, W. Schnelle, E. Gmelin, J. Maier, W. Sitte, J. Chem. Thermodyn. 35 (2003) 1469.10.1016/S0021-9614(03)00125-3Suche in Google Scholar
21. Y. An, Z. Li, H. Xiang, Y. Huang, J. Shen, Centr. Eur. J. Phys. 9 (2011) 1488.Suche in Google Scholar
22. K. Chiba, N. Kijima, Y. Takahashi, Y. Idemoto, J. Akimoto, Solid State Ionics 178 (2008) 1725.10.1016/j.ssi.2007.11.004Suche in Google Scholar
23. A. Kuhn, M. Kunze, P. Sreeraj, H. D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42 (2012) 2.10.1016/j.ssnmr.2012.02.001Suche in Google Scholar PubMed
24. M. Wilkening, P. Heitjans, Chem. Phys. Chem. 13 (2012) 53.10.1002/cphc.201100580Suche in Google Scholar
25. P. Heitjans, S. Indris, M. Wilkening, Diffus. Fundam. 2 (2005) 1.10.62721/diffusion-fundamentals.2.231Suche in Google Scholar
26. P. Heitjans, J. Kärger (Eds.): Diffusion in condensed matter: methods, materials, models, Springer, Berlin and New York (2005).10.1007/3-540-30970-5Suche in Google Scholar
27. S. Andersson, A. D. Wadsley, Acta Crystallogr. 14 (1961) 1245.10.1107/S0365110X61003636Suche in Google Scholar
28. M. Catti, I. Pinus, A. Scherillo, J. Solid State Chem. 205 (2013) 64.10.1016/j.jssc.2013.07.003Suche in Google Scholar
29. G. Bergerhoff, I. D. Brown, in: F. H. Allen (Ed.): Crystallographic databases: information content, software systems, scientific applications, Int. Union of Crystallography, Chester (1987), P. 77.Suche in Google Scholar
30. J. Rodríguez-Carvajal, Physica B Condensed Matter 192 (1993) 55.10.1016/0921-4526(93)90108-ISuche in Google Scholar
31. K. Brandenburg, H. Putz, Diamond – crystal and molecular structure visualization, crystal impact – Dr. H. Putz and Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany (2014).Suche in Google Scholar
32. K. R. Thruber, R. Tycko, J. Magn. Res. 196 (2009) 84.10.1016/j.jmr.2008.09.019Suche in Google Scholar PubMed PubMed Central
33. E. Fukushima, Roeder, Stephen B. W, Experimental pulse NMR: a nuts and bolts approach, Addison-Wesley Pub. Co., Advanced Book Program, Reading, Mass (1981).Suche in Google Scholar
34. D. Ailion, C. P. Slichter, Phys. Rev. Lett. 12 (1964) 168.10.1103/PhysRevLett.12.168Suche in Google Scholar
35. D. Ailion, C. P. Slichter, Phys. Rev. 137 (1965) A235.10.1103/PhysRev.137.A235Suche in Google Scholar
36. D. Wolf, Phys. Rev. B 10 (1974) 2710.10.1103/PhysRevB.10.2710Suche in Google Scholar
37. R. Böhmer, J. Magn. Res. 147 (2000) 78.10.1006/jmre.2000.2162Suche in Google Scholar PubMed
38. R. Böhmer, T. Jörg, F. Qi, A. Titze, Chem. Phys. Lett. 316 (2000) 419.10.1016/S0009-2614(99)01297-XSuche in Google Scholar
39. F. Qi, T. Jörg, R. Böhmer, Solid State Nucl. Magn. Reson. 22 (2002) 484.10.1006/snmr.2002.0073Suche in Google Scholar
40. J. Jeener, P. Broekaert, Phys. Rev. 157 (1967) 232.10.1103/PhysRev.157.232Suche in Google Scholar
41. X.-P. Tang, R. Busch, W.L. Johnson, Y. Wu, Phys. Rev. Lett. 81 (1998) 5358.10.1103/PhysRevLett.81.5358Suche in Google Scholar
42. M. Wilkening, P. Heitjans, J. Phys. Condens. Matter 18 (2006) 9849.10.1088/0953-8984/18/43/007Suche in Google Scholar
43. M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, Wiley, Chichester, UK (2008).Suche in Google Scholar
44. D. Marion, M. Ikura, R. Tschudin, A. Bax, J. Magn. Res. 85 (1989) 393.10.1016/0022-2364(89)90152-2Suche in Google Scholar
45. G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.10.1103/PhysRevB.47.558Suche in Google Scholar
46. G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.10.1103/PhysRevB.49.14251Suche in Google Scholar
47. G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6 (1996) 15.10.1016/0927-0256(96)00008-0Suche in Google Scholar
48. G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.10.1103/PhysRevB.54.11169Suche in Google Scholar PubMed
49. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed
50. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.10.1103/PhysRevLett.78.1396Suche in Google Scholar
51. P. E. Blöchl, Phys. Rev. B 50 (1994) 17953.10.1103/PhysRevB.50.17953Suche in Google Scholar
52. G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.10.1103/PhysRevB.59.1758Suche in Google Scholar
53. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.10.1103/PhysRevB.13.5188Suche in Google Scholar
54. O. V. Yakubovich, V. V. Kireev, Crystallogr. Rep. 48 (2003) 24.10.1134/1.1541737Suche in Google Scholar
55. M. C. Morris, Standard x-ray diffraction powder patterns, U.S. Dept. of the Commerce, National Bureau of Standards; G.P.O., Washington, D.C. (1979).10.6028/NBS.MONO.25-16Suche in Google Scholar
56. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40 (2002) 70.10.1002/mrc.984Suche in Google Scholar
57. J. Langer, V. Epp, P. Heitjans, F. A. Mautner, M. Wilkening, Phys. Rev. B 88 (2013) 94304.10.1103/PhysRevB.88.094304Suche in Google Scholar
58. J. van Kranendonk, Physica 20 (1954) 781.10.1016/S0031-8914(54)80191-1Suche in Google Scholar
59. G. Eriksson, A. D. Pelton, MTB 24 (1993) 795.10.1007/BF02663140Suche in Google Scholar
60. P. Pyykkö, Mol. Phys. 106 (2008) 1965.10.1080/00268970802018367Suche in Google Scholar
61. J. P. Yesinowski, J. Magn. Res. 252 (2015) 135.10.1016/j.jmr.2014.12.012Suche in Google Scholar PubMed
62. J. Hendrickson, P. Bray, J. Magn. Res. 9 (1973) 341.10.1016/0022-2364(73)90176-5Suche in Google Scholar
63. N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 73 (1948) 679.10.1103/PhysRev.73.679Suche in Google Scholar
64. P. M. Richards, in: M. B. Salamon (Ed.): Physics of superionic conductors, Springer, Berlin Heidelberg (1979), P. 141.10.1007/978-3-642-81328-3_6Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Mobility of Ions in Solids
- Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways
- Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7
- Density Functional Theory Evaluated for Structural and Electronic Properties of 1T-LixTiS2 and Lithium Ion Migration in 1T-Li0.94TiS2
- Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors
- Lithium Mobility in Borate and Phosphate Glass Networks
- Effect of Particle Size and Pretreatment on the Conductivity of Glass Powder during Compaction
- On the Mechanisms of Chemical Intercalation of Lithium in Electrode Materials
- Nanostructured Ceramics: Ionic Transport and Electrochemical Activity
- Lithium Insertion into Mixed Phase Titania Nanotubes
- Slow Lithium Transport in Metal Oxides on the Nanoscale
- Local Ion Dynamics in Polycrystalline β-LiGaO2: A Solid-State NMR Study
- NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates
Artikel in diesem Heft
- Frontmatter
- Preface
- Mobility of Ions in Solids
- Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways
- Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7
- Density Functional Theory Evaluated for Structural and Electronic Properties of 1T-LixTiS2 and Lithium Ion Migration in 1T-Li0.94TiS2
- Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors
- Lithium Mobility in Borate and Phosphate Glass Networks
- Effect of Particle Size and Pretreatment on the Conductivity of Glass Powder during Compaction
- On the Mechanisms of Chemical Intercalation of Lithium in Electrode Materials
- Nanostructured Ceramics: Ionic Transport and Electrochemical Activity
- Lithium Insertion into Mixed Phase Titania Nanotubes
- Slow Lithium Transport in Metal Oxides on the Nanoscale
- Local Ion Dynamics in Polycrystalline β-LiGaO2: A Solid-State NMR Study
- NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates