Startseite NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates

  • Alexander V. Skripov EMAIL logo , Kai Volgmann , C. Vinod Chandran , Roman V. Skoryunov , Olga A. Babanova , Alexei V. Soloninin , Shin-ichi Orimo und Paul Heitjans
Veröffentlicht/Copyright: 8. Mai 2017

Abstract

We have studied the Li diffusion in the complex hydride Li3(NH2)2I which appears to exhibit fast Li ion conduction. To get a detailed insight into the Li motion, we have applied 7Li nuclear magnetic resonance spectroscopy methods, such as spin-lattice relaxation in the laboratory and rotating frames of reference, as well as spin-alignment echo. This combined approach allows us to probe Li jump rates over the wide dynamic range (~102–109 s−1). The spin-lattice relaxation data in the range 210–410 K can be interpreted in terms of a thermally-activated Li jump process with a certain distribution of activation energies. However, the low-temperature spin-alignment echo decays at T≤200 K suggest the presence of another Li jump process with the very low effective activation energy.

Acknowledgements

This work was supported in part by the Russian Federal Agency of Scientific Organizations under Program “Spin” No. 01201463330, the Russian Foundation for Basic Research (Grant. No. 15-03-01114), and the JSPS KAKENHI Grant No. 25220911 from MEXT, Japan. A.V. Skripov is grateful to Alexander von Humboldt Foundation for the support of his research visit to Leibniz Universität Hannover. Research in Hannover has generally been supported by the German Research Foundation (DFG) in the frame of the Research Unit FOR 1277 (molife). The authors are also grateful to V.I. Voronin and V.A. Blatov for useful discussions.

References

1. M. Matsuo, S. Orimo, Adv. Energy Mater. 1 (2011) 161.10.1002/aenm.201000012Suche in Google Scholar

2. M. Matsuo, S. Kuromoto, S. Sato, H. Oguchi, H. Takamura, S. Orimo, Appl. Phys. Lett. 100 (2012) 203904.10.1063/1.4716021Suche in Google Scholar

3. P. E. de Jongh, D. Blanchard, M. Matsuo, T. J. Udovic, S. Orimo, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1.10.1007/s00339-015-9525-1Suche in Google Scholar

4. M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, H. Takamura, Appl. Phys. Lett. 91 (2007) 224103.10.1063/1.2817934Suche in Google Scholar

5. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 131 (2009) 894.10.1021/ja807392kSuche in Google Scholar PubMed

6. M. Matsuo, A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura, A. Borgschulte, A. Züttel, S. Orimo, J. Am. Chem. Soc. 131 (2009) 16389.10.1021/ja907249pSuche in Google Scholar PubMed

7. B. A. Boukamp, R. A. Huggins, Phys. Lett. A 72 (1979) 464.10.1016/0375-9601(79)90846-6Suche in Google Scholar

8. M. B. Ley, D. B. Ravnsbæk, Y. Filinchuk, Y. S. Lee, R. Janot, Y. W. Cho, J. Skibsted, T. R. Jensen, Chem. Mater. 24 (2012) 1654.10.1021/cm300792tSuche in Google Scholar

9. M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, T. R. Jensen, J. Phys. Chem. C 116 (2012) 21267.10.1021/jp307762gSuche in Google Scholar

10. T. J. Udovic, M. Matsuo, A. Unemoto, N. Verdal, V. Stavila, A. V. Skripov, J. J. Rush, H. Takamura, S. Orimo, Chem. Commun. 50 (2014) 3750.10.1039/C3CC49805KSuche in Google Scholar

11. T. J. Udovic, M. Matsuo, W. S. Tang, H. Wu, V. Stavila, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, J. J. Rush, A. Unemoto, H. Takamura, S. Orimo, Adv. Mater. 26 (2014) 7622.10.1002/adma.201403157Suche in Google Scholar PubMed

12. W. S. Tang, M. Matsuo, H. Wu, V. Stavila, W. Zhou, A. Talin, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, A. Unemoto, S. Orimo, T. J. Udovic, Adv. Energy Mater. 6 (2016) 1502237.10.1002/aenm.201502237Suche in Google Scholar

13. W. S. Tang, K. Yoshida, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, M. Dimitrievska, V. Stavila, S. Orimo, T. J. Udovic, ACS Energy Lett. 1 (2016) 659.10.1021/acsenergylett.6b00310Suche in Google Scholar

14. A. V. Skripov, A. V. Soloninin, M. B. Ley, T. R. Jensen, Y. Filinchuk, J. Phys. Chem. C 117 (2013) 14965.10.1021/jp403746mSuche in Google Scholar

15. Y. S. Lee, M. B. Ley, T. R. Jensen, Y. W. Cho, J. Phys. Chem. C 120 (2016) 19035.10.1021/acs.jpcc.6b06564Suche in Google Scholar

16. M. Matsuo, T. Sato, Y. Miura, H. Oguchi, Y. Zhou, H. Maekawa, H. Takamura, S. Orimo, Chem. Mater. 22 (2010) 2702.10.1021/cm1006857Suche in Google Scholar

17. A. V. Skripov, A. V. Soloninin, O. A. Babanova, R. V. Skoryunov, J. Alloys Compd. 645 (2015) S428.10.1016/j.jallcom.2014.12.089Suche in Google Scholar

18. C. Vinod Chandran, P. Heitjans, Ann. Rep. NMR Spectrosc. 89 (2016) 1.10.1016/bs.arnmr.2016.03.001Suche in Google Scholar

19. A. V. Skripov, R. V. Skoryunov, A. V. Soloninin, O. A. Babanova, M. Matsuo, S. Orimo, J. Phys. Chem. C 119 (2015) 13459.10.1021/acs.jpcc.5b03183Suche in Google Scholar

20. D. C. Look, I. J. Lowe, J. Chem. Phys. 44 (1966) 2995.10.1063/1.1727169Suche in Google Scholar

21. D. C. Ailion, C. P. Slichter, Phys. Rev. 137 (1965) A235.10.1103/PhysRev.137.A235Suche in Google Scholar

22. H. W. Spiess, J. Chem. Phys. 72 (1980) 6755.10.1063/1.439165Suche in Google Scholar

23. R. Böhmer, T. Jörg, F. Qi, A. Titze, Chem. Phys. Lett. 316 (2000) 419.10.1016/S0009-2614(99)01297-XSuche in Google Scholar

24. F. Qi, C. Rier, R. Böhmer, W. Franke, P. Heitjans, Phys. Rev. B 72 (2005) 104301.10.1103/PhysRevB.72.104301Suche in Google Scholar

25. M. Wilkening, P. Heitjans, Solid State Ionics 177 (2006) 3031.10.1016/j.ssi.2006.07.037Suche in Google Scholar

26. M. Wilkening, P. Heitjans, ChemPhysChem 13 (2012) 53.10.1002/cphc.201100580Suche in Google Scholar PubMed

27. M. Wilkening, P. Heitjans, Phys. Rev. B 77 (2008) 024311.10.1103/PhysRevB.77.024311Suche in Google Scholar

28. J. Jeener, P. Broekaert, Phys. Rev. 157 (1967) 232.10.1103/PhysRev.157.232Suche in Google Scholar

29. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961).10.1063/1.3057238Suche in Google Scholar

30. J. T. Markert, E. J. Cotts, R. M. Cotts, Phys. Rev. B 37 (1988) 6446.10.1103/PhysRevB.37.6446Suche in Google Scholar

31. A. Kuhn, M. Kunze, P. Sreeraj, H.-D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42 (2012) 2.10.1016/j.ssnmr.2012.02.001Suche in Google Scholar PubMed

32. V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des. 14 (2014) 3576.10.1021/cg500498kSuche in Google Scholar

Received: 2016-11-2
Accepted: 2017-1-18
Published Online: 2017-5-8
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0925/html
Button zum nach oben scrollen