NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates
-
Alexander V. Skripov
, Kai Volgmann
Abstract
We have studied the Li diffusion in the complex hydride Li3(NH2)2I which appears to exhibit fast Li ion conduction. To get a detailed insight into the Li motion, we have applied 7Li nuclear magnetic resonance spectroscopy methods, such as spin-lattice relaxation in the laboratory and rotating frames of reference, as well as spin-alignment echo. This combined approach allows us to probe Li jump rates over the wide dynamic range (~102–109 s−1). The spin-lattice relaxation data in the range 210–410 K can be interpreted in terms of a thermally-activated Li jump process with a certain distribution of activation energies. However, the low-temperature spin-alignment echo decays at T≤200 K suggest the presence of another Li jump process with the very low effective activation energy.
Acknowledgements
This work was supported in part by the Russian Federal Agency of Scientific Organizations under Program “Spin” No. 01201463330, the Russian Foundation for Basic Research (Grant. No. 15-03-01114), and the JSPS KAKENHI Grant No. 25220911 from MEXT, Japan. A.V. Skripov is grateful to Alexander von Humboldt Foundation for the support of his research visit to Leibniz Universität Hannover. Research in Hannover has generally been supported by the German Research Foundation (DFG) in the frame of the Research Unit FOR 1277 (molife). The authors are also grateful to V.I. Voronin and V.A. Blatov for useful discussions.
References
1. M. Matsuo, S. Orimo, Adv. Energy Mater. 1 (2011) 161.10.1002/aenm.201000012Suche in Google Scholar
2. M. Matsuo, S. Kuromoto, S. Sato, H. Oguchi, H. Takamura, S. Orimo, Appl. Phys. Lett. 100 (2012) 203904.10.1063/1.4716021Suche in Google Scholar
3. P. E. de Jongh, D. Blanchard, M. Matsuo, T. J. Udovic, S. Orimo, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1.10.1007/s00339-015-9525-1Suche in Google Scholar
4. M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, H. Takamura, Appl. Phys. Lett. 91 (2007) 224103.10.1063/1.2817934Suche in Google Scholar
5. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 131 (2009) 894.10.1021/ja807392kSuche in Google Scholar PubMed
6. M. Matsuo, A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura, A. Borgschulte, A. Züttel, S. Orimo, J. Am. Chem. Soc. 131 (2009) 16389.10.1021/ja907249pSuche in Google Scholar PubMed
7. B. A. Boukamp, R. A. Huggins, Phys. Lett. A 72 (1979) 464.10.1016/0375-9601(79)90846-6Suche in Google Scholar
8. M. B. Ley, D. B. Ravnsbæk, Y. Filinchuk, Y. S. Lee, R. Janot, Y. W. Cho, J. Skibsted, T. R. Jensen, Chem. Mater. 24 (2012) 1654.10.1021/cm300792tSuche in Google Scholar
9. M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, T. R. Jensen, J. Phys. Chem. C 116 (2012) 21267.10.1021/jp307762gSuche in Google Scholar
10. T. J. Udovic, M. Matsuo, A. Unemoto, N. Verdal, V. Stavila, A. V. Skripov, J. J. Rush, H. Takamura, S. Orimo, Chem. Commun. 50 (2014) 3750.10.1039/C3CC49805KSuche in Google Scholar
11. T. J. Udovic, M. Matsuo, W. S. Tang, H. Wu, V. Stavila, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, J. J. Rush, A. Unemoto, H. Takamura, S. Orimo, Adv. Mater. 26 (2014) 7622.10.1002/adma.201403157Suche in Google Scholar PubMed
12. W. S. Tang, M. Matsuo, H. Wu, V. Stavila, W. Zhou, A. Talin, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, A. Unemoto, S. Orimo, T. J. Udovic, Adv. Energy Mater. 6 (2016) 1502237.10.1002/aenm.201502237Suche in Google Scholar
13. W. S. Tang, K. Yoshida, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, M. Dimitrievska, V. Stavila, S. Orimo, T. J. Udovic, ACS Energy Lett. 1 (2016) 659.10.1021/acsenergylett.6b00310Suche in Google Scholar
14. A. V. Skripov, A. V. Soloninin, M. B. Ley, T. R. Jensen, Y. Filinchuk, J. Phys. Chem. C 117 (2013) 14965.10.1021/jp403746mSuche in Google Scholar
15. Y. S. Lee, M. B. Ley, T. R. Jensen, Y. W. Cho, J. Phys. Chem. C 120 (2016) 19035.10.1021/acs.jpcc.6b06564Suche in Google Scholar
16. M. Matsuo, T. Sato, Y. Miura, H. Oguchi, Y. Zhou, H. Maekawa, H. Takamura, S. Orimo, Chem. Mater. 22 (2010) 2702.10.1021/cm1006857Suche in Google Scholar
17. A. V. Skripov, A. V. Soloninin, O. A. Babanova, R. V. Skoryunov, J. Alloys Compd. 645 (2015) S428.10.1016/j.jallcom.2014.12.089Suche in Google Scholar
18. C. Vinod Chandran, P. Heitjans, Ann. Rep. NMR Spectrosc. 89 (2016) 1.10.1016/bs.arnmr.2016.03.001Suche in Google Scholar
19. A. V. Skripov, R. V. Skoryunov, A. V. Soloninin, O. A. Babanova, M. Matsuo, S. Orimo, J. Phys. Chem. C 119 (2015) 13459.10.1021/acs.jpcc.5b03183Suche in Google Scholar
20. D. C. Look, I. J. Lowe, J. Chem. Phys. 44 (1966) 2995.10.1063/1.1727169Suche in Google Scholar
21. D. C. Ailion, C. P. Slichter, Phys. Rev. 137 (1965) A235.10.1103/PhysRev.137.A235Suche in Google Scholar
22. H. W. Spiess, J. Chem. Phys. 72 (1980) 6755.10.1063/1.439165Suche in Google Scholar
23. R. Böhmer, T. Jörg, F. Qi, A. Titze, Chem. Phys. Lett. 316 (2000) 419.10.1016/S0009-2614(99)01297-XSuche in Google Scholar
24. F. Qi, C. Rier, R. Böhmer, W. Franke, P. Heitjans, Phys. Rev. B 72 (2005) 104301.10.1103/PhysRevB.72.104301Suche in Google Scholar
25. M. Wilkening, P. Heitjans, Solid State Ionics 177 (2006) 3031.10.1016/j.ssi.2006.07.037Suche in Google Scholar
26. M. Wilkening, P. Heitjans, ChemPhysChem 13 (2012) 53.10.1002/cphc.201100580Suche in Google Scholar PubMed
27. M. Wilkening, P. Heitjans, Phys. Rev. B 77 (2008) 024311.10.1103/PhysRevB.77.024311Suche in Google Scholar
28. J. Jeener, P. Broekaert, Phys. Rev. 157 (1967) 232.10.1103/PhysRev.157.232Suche in Google Scholar
29. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961).10.1063/1.3057238Suche in Google Scholar
30. J. T. Markert, E. J. Cotts, R. M. Cotts, Phys. Rev. B 37 (1988) 6446.10.1103/PhysRevB.37.6446Suche in Google Scholar
31. A. Kuhn, M. Kunze, P. Sreeraj, H.-D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42 (2012) 2.10.1016/j.ssnmr.2012.02.001Suche in Google Scholar PubMed
32. V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des. 14 (2014) 3576.10.1021/cg500498kSuche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Mobility of Ions in Solids
- Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways
- Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7
- Density Functional Theory Evaluated for Structural and Electronic Properties of 1T-LixTiS2 and Lithium Ion Migration in 1T-Li0.94TiS2
- Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors
- Lithium Mobility in Borate and Phosphate Glass Networks
- Effect of Particle Size and Pretreatment on the Conductivity of Glass Powder during Compaction
- On the Mechanisms of Chemical Intercalation of Lithium in Electrode Materials
- Nanostructured Ceramics: Ionic Transport and Electrochemical Activity
- Lithium Insertion into Mixed Phase Titania Nanotubes
- Slow Lithium Transport in Metal Oxides on the Nanoscale
- Local Ion Dynamics in Polycrystalline β-LiGaO2: A Solid-State NMR Study
- NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates
Artikel in diesem Heft
- Frontmatter
- Preface
- Mobility of Ions in Solids
- Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways
- Solid-State NMR Spectroscopy Study of Cation Dynamics in Layered Na2Ti3O7 and Li2Ti3O7
- Density Functional Theory Evaluated for Structural and Electronic Properties of 1T-LixTiS2 and Lithium Ion Migration in 1T-Li0.94TiS2
- Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors
- Lithium Mobility in Borate and Phosphate Glass Networks
- Effect of Particle Size and Pretreatment on the Conductivity of Glass Powder during Compaction
- On the Mechanisms of Chemical Intercalation of Lithium in Electrode Materials
- Nanostructured Ceramics: Ionic Transport and Electrochemical Activity
- Lithium Insertion into Mixed Phase Titania Nanotubes
- Slow Lithium Transport in Metal Oxides on the Nanoscale
- Local Ion Dynamics in Polycrystalline β-LiGaO2: A Solid-State NMR Study
- NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates