A new acylated flavone glycoside, in vitro antioxidant and antimicrobial activities from Saudi Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae) leaves
Abstract
Phytochemical investigation of Diospyros mespiliformis leaves resulted in the isolation of new acylated flavone isoscutellarein 7-O-(4′′′-O-acetyl)-β-allopyranosyl(1′′′ → 2′′)-β-glucopyranoside (1), along with eight known flavonoid metabolites, luteolin 3′,4′,6,8-tetramethyl ether (2), luteolin 4′-O-β-neohesperidoside (3), luteolin 7-O-β-glucoside (4), luteolin (5), quercetin (6), quercetin 3-O-β-glucoside (7), quercetin 3-O-α-rhamnoside (8), and rutin (9). Their structures were identified by analysis of spectroscopic (UV, NMR, and MS) data, as well as by acid hydrolysis for the isolated glycosides. The antioxidant activity of D. mespiliformis metabolites was determined by the DPPH radical-scavenging assay. The new acylated flavone (1) and flavonol O-rhamnoside (8) displayed the highest antioxidant activities with IC50 values 15.46 and 12.32 μg/mL, respectively, with respect to the antioxidant ascorbic acid (IC50 value 10.62 μg/mL). In addition, the isolated flavonoids were evaluated against four human pathogenic bacteria where the methylated flavone (2) exhibited potent activity against Escherichia coli with inhibition zone 34 mm, and mild activity of flavonol O-rhamnoside (8) against Staphylococcus aureus with MIC value 9.77 μg/mL. According to the MBC/MIC ratio, the antibacterial activity of the isolated flavonoids was considered flavonoid 2 is bactericidal nature against S. aureus, and flavonoids 3 and 4 are bactericidal against E. coli.
Acknowledgments
The authors are gratful to Dr. Mohamed Abdel Aziz (Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Center, Egypt) for testing the antimicrobial activity.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Ahmed, AH, Mahmud, AF. Pharmacological activities of Diospyros mespiliformis: a review. Int J Pharm Biol Sci 2017;7:93–6.Suche in Google Scholar
2. Watt, JM, Brandwijk, BG. The medicinal and poisonous plants of Southern and Eastern Africa, 2nd ed. Edinburgh: Livingstone; 1962:369 p.Suche in Google Scholar
3. Ruffo, CK, Birnie, A, Tengnas, B. Edible wild plants of Tanzania. Technical Handbook No 27. Regional Land Management Unit/ SIDA, Nairobi, Kenya. 2002, p. 766.Suche in Google Scholar
4. Adzu, B, Amos, S, Dzarma, S, Muazzam, I, Gamaniel, KS. Pharmacological Evidence favouring the folkloric use of Diospyros mespiliformis in the relief of pain and fever. J Ethnopharmacol 2002;82:191–5. https://doi.org/10.1016/s0378-8741(02)00179-4.Suche in Google Scholar PubMed
5. Mohamed, IE, El Nur, EE, Choudhary, MI, Khan, SN. Bioactive natural products from two Sudanese medicinal plants Diospyros mespiliformis and Croton zambesicus. Record Nat Prod 2009;3:198–203.Suche in Google Scholar
6. Abass, MA, Kabbashi, AS, Suliman, SI, Ali, A, Salah, O, Garbi, M. In vitro antioxidant Activity, phytochemical analysis and cytotoxicity of Diospyros mespiliformis. Int J Botany Stud 2016;1:23–8.Suche in Google Scholar
7. Shagal, MH, Kubmarawa, D, Alim, H. Preliminary phytochemical investigation and antimicrobial evaluation of roots, stem-bark and leaves extracts of Diospyros mespiliformis. Int Res J Biochem Bioinform 2012;2:011–5.Suche in Google Scholar
8. Dangoggo, SM, Hassan, LG, Sadiq, IS, Manga, SB. Phytochemical analysis and antibacterial screening of leaves of Diospyros Mespiliformis and Ziziphus Spina-Christi. Int J Biochem Res Rev 2016;12:1–9.Suche in Google Scholar
9. Dangoggo, SM, Hassan, LG, Sadiq, IS, Manga, SB. Bioactive isolation and antifungal screening of leaf and bark of Diospyros mespiliformis and Ziziphus spinachristi. Int J Trad Nat Med 2013;2:104–17.Suche in Google Scholar
10. Abba, A, Agunu, A, Abubakar, A, Abubakar, US, Jajere, MU. Phytochemical screening and antiproliferative effects of methanol extract of stem bark of Diospyros mespiliformis Hochst (Ebenaceae) against Guinea Corn (Sorghum Bicolor) seeds radicles length. Bayero J Pure Appl Sci 2016;9:1–5. https://doi.org/10.4314/bajopas.v9i1.1.Suche in Google Scholar
11. Oguche, M, Nzelibe, HC. In-vivo antiplasmodial activity of aqueous, n-butanol and ethylacetate fractions of leaf and stem bark methanol extracts of Diospyros mespiliformis on Plasmodium berghei berghei (Nk65) Infected Mice. Int J Biochem Res Rev 2012;12:1–9.10.9734/IJBCRR/2016/21645Suche in Google Scholar
12. Muhammad, K, Magaji, MG, Danjuma, NM, Zezi, AU, Gyang, SS. Methanol leaf extract of Diospyros mespiliformis Hochst. offers protection against some chemoconvulsants. Trop J Nat Prod Res 2017;1:113–7. https://doi.org/10.26538/tjnpr/v1i3.6.Suche in Google Scholar
13. Adzu, B, Amos, S, Muazzam, I, Inyang, US, Gamaniel, KS. Neuropharmacological screening of Diospyros mespiliformis in mice. J Ethnopharmacol 2003;83:139–43. https://doi.org/10.1016/s0378-8741(02)00249-0.Suche in Google Scholar PubMed
14. Adzu, B, Chindo, B, Tarfa, FD, Salawu, OA, Igoli, OJ. Isolation and analgesic property of lupeol from Diospyros mespiliformis stem bark. J Med Plants Res 2015;9:813–9.10.5897/JMPR2015.5877Suche in Google Scholar
15. Bulus, A, Salawu, OA. Screening Diospyros mespiliformis extract for antimalarial potency. Int J Biol Chem Sci 2009;3:271–6.10.4314/ijbcs.v3i2.44513Suche in Google Scholar
16. David, OM, Olanlokun, JO, Owoniyi, BE, Ayeni, MO, Ebenezer, O, Koorbanally, NA. Studies on the mitochondrial, immunological and inflammatory effects of solvent fractions of Diospyros mespiliformis Hochst in Plasmodium berghei-infected mice. Sci Rep 2021;11:6941. https://doi.org/10.1038/s41598-021-85790-6.Suche in Google Scholar PubMed PubMed Central
17. Olanlokun, JO, Bodede, O, Prinsloo, G, Olorunsogo, OO. Comparative antimalarial, toxicity and mito-protective effects of Diospyros mespiliformis Hochst. ex A. DC. and Mondia whitei (Hook.f.) Skeels on Plasmodium berghei infection in mice. J Ethnopharmacol 2021;268:113585. https://doi.org/10.1016/j.jep.2020.113585.Suche in Google Scholar PubMed
18. Zhong, M, Waterman, PG, Jeffreys, JO. Naphthoquinones and triterpenes from African Diospyros species. Phytochemistry 1984;23:1067–72. https://doi.org/10.1016/s0031-9422(00)82610-2.Suche in Google Scholar
19. Fallas, AL, Thompson, RH. Ebenaceae extractives. Part-111. Binaphthoquinones from Diospyros species. J Chem Soc 1968;18:2279–82. https://doi.org/10.1039/j39680002279.Suche in Google Scholar
20. Lajubutu, BA, Pinney, RJ, Robert, MF, Odelola, HA, Oso, BA. Antibacterial activity of diosquinone and plumbagin from the root of Diospyros mespiliformis (Hostch) (Ebenaceae). Phytother Res 1995;9:346–50. https://doi.org/10.1002/ptr.2650090508.Suche in Google Scholar
21. Khan, MR, Nkunya, MH, Wevers, H. Triterpenoids from leaves of Diospyros species. Planta Med 1980;38:380–1. https://doi.org/10.1055/s-2008-1074895.Suche in Google Scholar
22. Abou El-Kassem, LT, Hawas, UW, Abdelfattah, MS, Mostafa, AA. Rotenoid and isoflavone metabolites from an antioxidant seed extract of Dalbergia lanceolaria subsp. paniculata (roxb.) thoth. Nat Prod Res 2020;31:613–20. https://doi.org/10.1080/14786419.2018.1491042.Suche in Google Scholar PubMed
23. Bauer, AW, Kirby, WM, Sherris, JC, Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–6. https://doi.org/10.1093/ajcp/45.4_ts.493.Suche in Google Scholar
24. Wollenweber, E, Doerr, M, Roitman, JN, Schilling, E. External flavonoids of three species of Viguiera, section Hypargyrea (Asteraceae). Z Naturforsch 1995;50c:588–90. https://doi.org/10.1515/znc-1995-7-819.Suche in Google Scholar
25. Rizwani, GH, Usmanghani, K, Ahmad, M, Ahmad, VU. Flavone glycosides of Caralluma tuberculata N. E. Brown. Pak J. Pharm Sci 1990;3:27–32.Suche in Google Scholar
26. Mabry, TJ, Markham, KR, Thomas, MB. The systematic identification of flavonoids. Berlin: Springer; 1970.10.1007/978-3-642-88458-0Suche in Google Scholar
27. Lenherr, A, Mabry, TJ. Acetylated allose-containing flavonoid glucosides from Stachys anisochila. Phytochemistry 1987;26:1185–8. https://doi.org/10.1016/s0031-9422(00)82375-4.Suche in Google Scholar
28. Burda, S, Oleszek, W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001;49:2774–9. https://doi.org/10.1021/jf001413m.Suche in Google Scholar PubMed
29. Sadhu, SK, Okuyama, E, Fujimoto, H, Ishibashi, M, Yesilada, E. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. J Ethnopharmacol 2006;108:371–8. https://doi.org/10.1016/j.jep.2006.05.024.Suche in Google Scholar PubMed
30. Heim, KE, Tagliaferro, AR, Bobilya, DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002;13:572–84. https://doi.org/10.1016/s0955-2863(02)00208-5.Suche in Google Scholar PubMed
31. Cotelle, N, Bernier, J, Catteau, J, Pommery, J, Wallet, J, Gaydou, EM. Antioxidant properties of hydroxy-flavones. Free Radic Biol Med 1996;20:35–43. https://doi.org/10.1016/0891-5849(95)02014-4.Suche in Google Scholar PubMed
32. Thomas, BT, Adeleke, AJ, Raheem-Adeloma, RR, Kolawole, R. Efficiency of some disinfectants on bacterial wound pathogens. Life Sci J 2012;9:752–5.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2021-0291).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles
- Research Articles
- Effect of oligosaccharides on the antioxidant, lipid and inflammatory profiles of rats with streptozotocin-induced diabetes mellitus
- A new acylated flavone glycoside, in vitro antioxidant and antimicrobial activities from Saudi Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae) leaves
- Biogenic synthesis of gold nanoparticles using Artemia urumiana extract and five different thermal accelerated techniques: fabrication and characterization
- Insighting the optoelectronic, charge transfer and biological potential of benzo-thiadiazole and its derivatives
- Utilizing response surface methodology to evaluate the process parameters of indigenous cucumber fermentation
- Synthesis, antimicrobial activity and modeling studies of thiazoles bearing pyridyl and triazolyl scaffolds
Artikel in diesem Heft
- Frontmatter
- Review Article
- Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles
- Research Articles
- Effect of oligosaccharides on the antioxidant, lipid and inflammatory profiles of rats with streptozotocin-induced diabetes mellitus
- A new acylated flavone glycoside, in vitro antioxidant and antimicrobial activities from Saudi Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae) leaves
- Biogenic synthesis of gold nanoparticles using Artemia urumiana extract and five different thermal accelerated techniques: fabrication and characterization
- Insighting the optoelectronic, charge transfer and biological potential of benzo-thiadiazole and its derivatives
- Utilizing response surface methodology to evaluate the process parameters of indigenous cucumber fermentation
- Synthesis, antimicrobial activity and modeling studies of thiazoles bearing pyridyl and triazolyl scaffolds